Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4091–4098 | Cite as

Two-dimensional (2D) and three-dimensional (3D) analyses of plasma-sprayed alumina microstructures for finite-element simulation of Young’s modulus

  • O. Amsellem
  • K. Madi
  • F. Borit
  • D. Jeulin
  • V. Guipont
  • M. Jeandin
  • E. Boller
  • F. Pauchet
Rees Rawlings Festschrift

Abstract

Thermally sprayed ceramic coatings such as plasma-sprayed alumina exhibit a composite microstructure actually due to the presence of defects such as pores, inter-lamellar and intra-lamellar cracks. These second phase-typed features influence the mechanical behaviour of the coating dramatically. In this study, a microstructure simulation of plasma-sprayed alumina was developed for the optimizing of component properties such as electrical tool used in the oil industry. This approach consisted of a finite-element analysis of mechanical properties from simulated microstructures. Several composite microstructures were tested from air plasma spraying of alumina. Various degrees of porosity and cracks could be obtained from different spraying conditions. Every composite microstructure was studied using a quantitative image analysis of scanning electron microscope (SEM) cross-sections. A finite-element model based on the actual microstructure was developed. First, two-dimensional (2D) finite elements meshes were created from SEM images of microstructures. Then, in order to have a realistic representation of the three-dimensional (3D) microstructure, pictures were obtained using X-ray microtomography. Volume tetrahedral grids were generated to simulate the properties of alumina coatings. This work studies the contribution of every part of the alumina coating to the final properties and shows potentials and limitations of the 2D and 3D computational approach.

Keywords

Alumina Coating Quantitative Image Analysis Composite Microstructure Actual Microstructure Spray Alumina Coating 

References

  1. 1.
    Gadow R, Killinger A, Voss A, Friedrich C (1998) Proceedings of the 15th international thermal spray conference, Nice, p 1083Google Scholar
  2. 2.
    Pawlowski L (1988) Surf Coat Technol 35:285CrossRefGoogle Scholar
  3. 3.
    Beauvais S, Guipont V, Jeandin M, Juve D, Treheux D, Robisson A, Saenger R (2005) J Electroceramics 15:65CrossRefGoogle Scholar
  4. 4.
    Li CJ, Ohmori A (2002) J Therm Spray Technol 11:365CrossRefGoogle Scholar
  5. 5.
    Beauvais S, Guipont V, Borit F, Jeandin M, Espagnol M, Khor KA, Robisson A, Saenger R (2004) Surf Surf Coat Technol 183:201Google Scholar
  6. 6.
    Sarikaya O (2005) Surf Coat Technol 190:388CrossRefGoogle Scholar
  7. 7.
    Bolelli G, Cannillo V, Lusvarghi L, Manfredini T, Montorsi M (2005) Surf Coat Technol 201:474CrossRefGoogle Scholar
  8. 8.
    Wang Z, Kulkarni A, Deshpande S, Nakamuri T, Herman H (2003) Acta Mater 51:5319CrossRefGoogle Scholar
  9. 9.
    Sevostianov I, Kachanov M (2001) Mater Sci Eng A 297:235CrossRefGoogle Scholar
  10. 10.
    Kulkarni A, Goland A, Herman H, Allen A, Ilavsky J, Long G, De Carlo F (2005) J Therm Spray Technol 14:239CrossRefGoogle Scholar
  11. 11.
    Madi K, Forest S, Boussuge M, Gailliegue S, Lataste E, Buffiere JY, Bernard D, Jeulin D (2007) Comput Mater Sci 39:224CrossRefGoogle Scholar
  12. 12.
    Michlik P, Berndt CC (2006) Surf Coat Technol 201:2369CrossRefGoogle Scholar
  13. 13.
    Feldkamp LA, Davis LC, Kress JW (1984) J Opt Soc Am 6:612CrossRefGoogle Scholar
  14. 14.
    Ctibor P, Bohac P, Stranyanek M, Ctyrtlik R (2006) J Eur Ceramic Soc 26:3509CrossRefGoogle Scholar
  15. 15.
    Boch P, Gault C, Platon F (1983) In: Vincenzini P (ed) Proceedings of the 5th international meeting on modern ceramics technologies, Lignano Sabbiadoro, p 825Google Scholar
  16. 16.
    Pharr GM, Olivier WC, Brotzen FR (1992) J Mater Res 7:613CrossRefGoogle Scholar
  17. 17.
    Houdaigui ELF, Forest S, Gourgues AF, Jeulin D (2005) Proceedings of the IUTAM symposium, Beijing, p 171Google Scholar
  18. 18.
    Damani RJ, Wanner A (2000) J Mater Sci 35:4307CrossRefGoogle Scholar
  19. 19.
    Parra Denis E, Barat C, Jeulin D, Ducottet C (2007) Mat Charact (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • O. Amsellem
    • 1
  • K. Madi
    • 1
  • F. Borit
    • 1
  • D. Jeulin
    • 1
  • V. Guipont
    • 1
  • M. Jeandin
    • 1
  • E. Boller
    • 2
  • F. Pauchet
    • 3
  1. 1.Ecole des Mines de Paris—ParisTech, Centre des Materiaux (CNRS 7633), Centre de Compétence en Procédés de Projection (C2P)Evry CedexFrance
  2. 2.ID19 Topography & Microtomography GroupEuropean Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Schlumberger, Riboud Product CenterClamartFrance

Personalised recommendations