Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1278–1285 | Cite as

Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone

  • Hans-Rudolf WenkEmail author
  • P. J. M. Monteiro
  • K. Shomglin
Article

Abstract

It is shown that the deformation state of a granitic rock has a profound impact on the long-term stability of concrete, if used as aggregate due to enhanced susceptibility to the alkali-silica reaction. An investigation of the microstructure of granitic rocks from the Santa Rosa mylonite zone in southern California with transmission electron microscopy and neutron diffraction revealed that, as these rocks become progressively deformed from granite to mylonite and phyllonite, accompanied by grain size reduction, the dislocation density in quartz (investigated with TEM) increases and preferred orientation of biotite (determined by neutron diffraction) becomes stronger. While the contribution of dislocations to the bulk energy increase of quartz is low, dislocations provide favorable sites for dissolution and precipitation to occur. A comparison with ASTM C 1260 expansion tests of these same samples indicates that expansion increases with the dislocation density.

Keywords

Dislocation Density Prefer Orientation Pole Figure Granitic Rock Mylonite Zone 

Notes

Acknowledgements

The authors acknowledge access to neutron scattering facilities at Institut Laue-Langevin in Grenoble and the Lujan Center, Los Alamos National Laboratory, as well as transmission electron microscopes at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory. We also are appreciative for financial support from the National Science Foundation grant CMS 062464 and EAR 0337006.

References

  1. 1.
    Gogte BS (1973) Eng Geol 7:135CrossRefGoogle Scholar
  2. 2.
    Grattan-Bellew PE (1986) Proceedings of the 7th international conferenc on alkali-aggregate reaction. Park Ridge, NJ, p 434Google Scholar
  3. 3.
    Grattan-Bellew PE (1992) Proceedings of the 9th international conference on alkali-aggregate reaction in concrete, Concrete Society Publication CS 104, vol 1. London, p 383Google Scholar
  4. 4.
    French WJ (1992) Proceedings of the 9th international conference on alkali-aggregate reaction in concrete, Concrete Society Publication CS 104, vol 1. London, p 338Google Scholar
  5. 5.
    Kerrick DM, Hooton RD (1992) Cement Concrete Res 22:949CrossRefGoogle Scholar
  6. 6.
    Monteiro PJM, Shomglin K, Wenk H-R, Hasparyk NP (2001) ACI Mater J 98:179Google Scholar
  7. 7.
    Wenk H-R (1998) J Struct Geol 20:559CrossRefGoogle Scholar
  8. 8.
    Goodwin LB, Wenk H-R (1995) J Struct Geol 17:689CrossRefGoogle Scholar
  9. 9.
    Wenk H-R, Pannetier J (1990) J Struct Geol 12:177CrossRefGoogle Scholar
  10. 10.
    O’Brien DK, Wenk H-R, Ratschbacher L, You Z (1987) J Struct Geol 9:719CrossRefGoogle Scholar
  11. 11.
    Hutchison CS (1975) Schweizerische Mineralogische und Petrographische Mitteilungen 55:243Google Scholar
  12. 12.
    American Society for Testing and Materials (2002) Standard test method for potential alkali reactivity of aggregates (Mortar-Bar method), ASTM C 1260-01, Annual book of ASTM standards, vol 04.02. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  13. 13.
    Wenk H-R, Matthies S, Donovan J, Chateigner D (1998) J Appl Crystallogr 31:262CrossRefGoogle Scholar
  14. 14.
    Wenk H-R, Lutterotti L, Vogel S (2003) Nucl Instr Methods A 515:575CrossRefGoogle Scholar
  15. 15.
    Lutterotti L, Matthies S, Wenk H-R (1999) Int U Crystallogr Comm Powder Diffr Newsl 21:14Google Scholar
  16. 16.
    Matthies S, Vinel G (1982) Phys Status Solidi B 112:K111CrossRefGoogle Scholar
  17. 17.
    Pehl J, Wenk H-R (2005) J Struct Geol 27:1741CrossRefGoogle Scholar
  18. 18.
    Anderson GM, Burnham CW (1965) Am J Sci 263:494CrossRefGoogle Scholar
  19. 19.
    Liddell NA, Phakey PP, Wenk H-R (1976) In: Wenk H-R (ed) Electron microscopy in mineralogy. Springer Verlag, Heidelberg, p 419Google Scholar
  20. 20.
    Blum AE, Yund RA, Lasaga AC (1990) Geochim Cosmochim Acta 54:283CrossRefGoogle Scholar
  21. 21.
    Van Der Hoek B, Van Der Eerden JP, Bennema P (1982) J Cryst Growth 56:621CrossRefGoogle Scholar
  22. 22.
    Hirth JP, Lothe J (1982) Theory of dislocations. John Wiley and Sons, New YorkGoogle Scholar
  23. 23.
    Wintsch RP, Dunning J (1985) J Geophys Res 90:3649CrossRefGoogle Scholar
  24. 24.
    Heinisch HL, Sines G, Goodman JW, Kirby SH (1975) J Geophys Res 80:1885CrossRefGoogle Scholar
  25. 25.
    Robie RA, Hemingway BS, Fisher JR (1978) United States Geological Survey Bulletin 1452Google Scholar
  26. 26.
    Lasaga AC, Blum AE (1986) Geochim Cosmochim Acta 50:2363CrossRefGoogle Scholar
  27. 27.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley and Sons, New YorkGoogle Scholar
  28. 28.
    Zimonyi G (1957) Acta Phys Hungaria 8:119CrossRefGoogle Scholar
  29. 29.
    Augustine F, Hale DR (1960) J Phys Chem Solids 13:344CrossRefGoogle Scholar
  30. 30.
    Burton WK, Cabrera N, Frank FC (1951) Philos Trans R Soc London A 243:299CrossRefGoogle Scholar
  31. 31.
    Cabrera N, Levine MM (1956) Philos Mag 1:450CrossRefGoogle Scholar
  32. 32.
    Lasaga AC (1983) Proceedings of the 4th international symposium on water–rock interactions, p 269Google Scholar
  33. 33.
    Brantley SL, Crane SR, Credar DA, Hellmann R, Stallard R (1986) Geochim Cosmochim Acta 50:2349CrossRefGoogle Scholar
  34. 34.
    Brantley SL, Crane SR, Credar DA, Hellmann R, Stallard R (1986) Geochem Process Miner Surf. In: Davis JA, Hayes KF (eds) Amer Chem Soc Symposium Series 323. Washington DC, p 634Google Scholar
  35. 35.
    Murr LE, Hiskey JB (1981) Metall Trans 12B:255CrossRefGoogle Scholar
  36. 36.
    Casey WC, Carr MJ, Graham RA (1988) Geochim Cosmochim Acta 52:1545CrossRefGoogle Scholar
  37. 37.
    Holdren GR, Casey WH, Westrich HR, Carr M, Boslough M (1988) Chem Geol 70:79CrossRefGoogle Scholar
  38. 38.
    Schott J, Brantley S, Credar D, Guy C, Borcsik M, Willaime C (1989) Geochim Cosmochim Acta 53:373CrossRefGoogle Scholar
  39. 39.
    Blum AE, Lasaga AC, Yund RA (1990) Geochim Cosmochim Acta 54:283CrossRefGoogle Scholar
  40. 40.
    Gratz AJ, Bird P, Quiro GB (1990) Geochim Cosmochim Acta 54:2911CrossRefGoogle Scholar
  41. 41.
    Liu M, Yund RA, Tullis J, Toper L, Navrotsky A (1995) Phys Chem Minerals 22:67Google Scholar
  42. 42.
    Boullier AM, Guegen Y (1975) Contrib Mineral Petrol 23:128Google Scholar
  43. 43.
    Behrmann JH, Mainprice D (1997) Tectonophysics 140:297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hans-Rudolf Wenk
    • 1
    Email author
  • P. J. M. Monteiro
    • 2
  • K. Shomglin
    • 1
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations