Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 9920–9926 | Cite as

Mass spectroscopic measuring of SiCln (n = 0–2) radicals in SiCl4 RF glow discharge plasma

  • Zhaokui Wang
  • Yanhui Lou
Article

Abstract

The relative densities of SiCln (n = 0–2) in SiCl4 radio frequency (rf) glow discharge plasma are measured by mass spectrometry. The effects of discharge parameters, i.e., rf power, discharge pressure, substrate temperature, and SiCl4 flow rate on the relative densities of SiCln (n = 0–2) are investigated in detail. An optimum configuration of discharge parameters (low rf power, high discharge pressure, low substrate temperature, and low flow rate), which enhanced the formation of SiCln (n = 0–2) radicals, is searched by a great deal of measurements and discussions. In the optimum configuration of discharge parameters, we measure the spatial distribution of SiCln (n = 0–2) radicals in the most optimized plasma parameters. The experimental results reveal that Si and SiCl may be the dominant precursors in forming the thin film.

Keywords

Relative Density Discharge Pressure Ionization Cross Section SiCl Discharge Chamber 

Notes

Acknowledgements

This work is supported by the State Key Developments Program for Basic Research of China (Grant No. G2000028208). The authors would like to thank Professor K. N. Joshipura for calculating the ionization cross sections αn(Ee) of SiCln (n = 1,2) radicals.

References

  1. 1.
    Shirai H, Fukai C, Sakuma Y, Moriya Y (2000) J Non-Cryst Solids 266:131CrossRefGoogle Scholar
  2. 2.
    Liu H, Jung S, Fujimura Y, Fukai C (2001) Jpn J Appl Phys 40:44CrossRefGoogle Scholar
  3. 3.
    Cicala G, Capezzuto P, Bruno G (2001) Thin Solid Films 383:203CrossRefGoogle Scholar
  4. 4.
    Lin KX, Lin XY, Chi LF, Yu CY, Yao RH, Yu YP (2003) Chin Phys 12:1009CrossRefGoogle Scholar
  5. 5.
    Chen KJ, Huang XF, Xu J (2001) Chin Phys 10:748CrossRefGoogle Scholar
  6. 6.
    Kunihide T, Takuya M, Hiroshi H (1991) Jpn J Appl Phys 30:L1208CrossRefGoogle Scholar
  7. 7.
    Akihiro K, Naoki K, Kenichi O, Toshio G (1993) Jpn J Appl Phys 32:L543CrossRefGoogle Scholar
  8. 8.
    Yoshitaka N, Koichi K, Toshihiko M, Makiko K, Katsuhiko H, Hironobu U, Atsushi M, Hideki M (2000) J Appl Phys 88:5437CrossRefGoogle Scholar
  9. 9.
    Lin XY, Huang CJ, Lin KX, Yu YP, Yu CY, Chi LF (2003) Chin Phys Lett 20:1879CrossRefGoogle Scholar
  10. 10.
    Huang R, Lin XY, Yu YP, Lin KX, Wei JH, Yu CY, Wang ZK (2004) Chin Phys Lett 21:1168CrossRefGoogle Scholar
  11. 11.
    Bruno G, Capezzuto P, Cicala G (1987) J Appl Phys 62:2050CrossRefGoogle Scholar
  12. 12.
    Tang YS, Wilkinson CDW (1998) Appl Phys Lett 58:2898CrossRefGoogle Scholar
  13. 13.
    Sakai T, Sakai A, Okano H (1993) Jpn J Appl Phys 32:3089CrossRefGoogle Scholar
  14. 14.
    Cunge G (2004) J Appl Phys 96:4578CrossRefGoogle Scholar
  15. 15.
    Sansa RS, Ronn AM (1985) Chem Phys 96:183CrossRefGoogle Scholar
  16. 16.
    Washida N, Matsumi Y, Hayashi T (1985) J Chem Phys 83:2769CrossRefGoogle Scholar
  17. 17.
    Neill JO’, Singh J (1994) J Appl Phys 76:5967CrossRefGoogle Scholar
  18. 18.
    Booth JP, Cunge G, Neuilly F (1998) Plasma Sources Sci Technol 7:423CrossRefGoogle Scholar
  19. 19.
    Wang ZK, Lou YH, Lin KX, Lin XY (2007) Int J Mass Spec 261:25CrossRefGoogle Scholar
  20. 20.
    Robertson R, Gallagher A (1986) J Appl Phys 59:3402CrossRefGoogle Scholar
  21. 21.
    Joshipura KN, Minaxi V, Limbachiya CG, Antony BK (2004) Phys Rev A 69:022705CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsHenan Normal UniversityXinxiangP.R. China

Personalised recommendations