Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10098–10102 | Cite as

Computer simulation of electrical conductivity of graphite-based polypropylene composites based on digital image analysis

  • Radwan DweiriEmail author
  • Jaafar Sahari
Article

Abstract

The electrical conductivity of polypropylene/graphite (PP/G) composites and polypropylene/graphite/carbon black (PP/G/CB) composites was investigated in this article. A simulation procedure, which is not limited to any specific parameters (i.e. graphite size and shape), was used to numerically compute the electrical conductivity of the composites. The simulations were carried out using a 2D finite element program based on the digital image analysis. The simulation results were in good agreement with the experimental conductivity values even though there were several limitations in using digital image analysis such as sampling, sample preparation, the quality of the image and the choice of the threshold. The microstructures of the surfaces of the composites were observed using scanning electron microscopy (SEM).

Keywords

Digital Image Analysis Experimental Conductivity Conductive Polymer Composite Atomic Number Contrast Measure Fraction Area 

Notes

Acknowledgements

The authors would like to acknowledge the Ministry of Science, Technology and the Environment (MOSTE), Malaysia, for the financial support of this project.

References

  1. 1.
    Deprez N, McLachlan DS (1988) J Phys D: Appl Phys 21:101CrossRefGoogle Scholar
  2. 2.
    McLachlan DS (1987) J Phys C 10:865CrossRefGoogle Scholar
  3. 3.
    Vovchenko L, Matzui L, Tzaregradska T, Stelmakh O (2003) Compos Sci Technol 63:807CrossRefGoogle Scholar
  4. 4.
    Lux F (1993) J Mater Sci 28:285CrossRefGoogle Scholar
  5. 5.
    Tchmutin LA, Ponomarenko AT, Krinichnaya EP, Kozub GI, Efimov ON (2003) Carbon 41:1391CrossRefGoogle Scholar
  6. 6.
    Ezquerra TA, Connor MT, Roy S, Kulescza M (2001) Compos Sci Technol 61:903CrossRefGoogle Scholar
  7. 7.
    Blaszkiewicz M, Mclachlan DS, Newnham RE (1992) Polym Eng Sci 32:421CrossRefGoogle Scholar
  8. 8.
    Marquez A, Uribe J (1997) J App Polym Sci 66:2221CrossRefGoogle Scholar
  9. 9.
    Thongruang W, Spontak RJ, Balik CM (2002) Polymer 43:2279CrossRefGoogle Scholar
  10. 10.
    Clingerman ML, King JA, Schuiz KH, Meyers JD (2002) J App Polym Sci 83:1341CrossRefGoogle Scholar
  11. 11.
    Beaunier L, Keddam M, Garcia-Jareno JJ, Vicente F, Navarro-Laboulais J (2004) J Electroanal Chem 566:159CrossRefGoogle Scholar
  12. 12.
    Guild FJ, Summerscales J (1993) Composites 24:383CrossRefGoogle Scholar
  13. 13.
    Zivkovic L, Nikolic Z, Boskovic S, Miljkovic M (2004) J Alloys Compd 373:231CrossRefGoogle Scholar
  14. 14.
    Navarro-Laboulais J, Trijueque J, García-Jareño JJ, Vicente F (1995) J Electroanal Chem 399:115CrossRefGoogle Scholar
  15. 15.
    Geandier G, Hazotte A, Denis S, Mocellin A, Maire E (2003) Scripta Mater 48:1219CrossRefGoogle Scholar
  16. 16.
    Thongruang W, Spontak RJ, Balik CM (2002) Polymer 43:3717CrossRefGoogle Scholar
  17. 17.
    Dawson JC, Adkins CJ (1996) J Phys Condens Matter 8:8321CrossRefGoogle Scholar
  18. 18.
    Garboczi EJ (1998), Finite element and finite difference codes for computing the linear electrical and elastic properties of digital images of random materials. National Institute of Standards and Technology Internal Report 6269Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniversiti Kebangsaan MalayasiaBangiMalaysia

Personalised recommendations