Journal of Materials Science

, Volume 42, Issue 24, pp 9927–9933 | Cite as

Reaction synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system

  • Binglin Zou
  • Ping Shen
  • Qichuan JiangEmail author


The TiC–TiB2/Al composites were fabricated by self-propagating high-temperature synthesis (SHS) from Al–Ti–B4C compacts. The addition of Al to the Ti–B4C reactants facilitates the ignition occurrence, lowers the reaction exothermicity, and modifies the resultant microstructure. The maximum combustion temperature and combustion wave velocity decrease with the increase in the Al amount. The B4C particle size exerts a significant effect on the combustion wave velocity and the extent of the reaction, while that of Ti has only a limited influence. The reaction products are primarily dependent on the B4C particle size and the Al content in the reactants. Desired products consisting of only the TiC, TiB2, and Al phases could be obtained by a cooperative control of the B4C particle size and the Al content.


TiAl3 Ignition Delay Time Titanium Aluminides Titanium Diboride Maximum Combustion Temperature 



This work is supported by The National Natural Science Foundation of China (Project No. 50531030) and the Ministry of Science and Technology of China (No. 2005CCA00300) as well as by the Project 985-Automotive Engineering of Jilin University.


  1. 1.
    Wen G, Li SB, Zhang BS, Guo ZX (2001) Acta Mater 49:1463CrossRefGoogle Scholar
  2. 2.
    Bhaumik SK, Divakar C, Singh AK, Upadhyaya GS (2000) Mater Sci Eng A279:275CrossRefGoogle Scholar
  3. 3.
    Gotman I, Travitzky NA, Gutmanas EY (1998) Mater Sci Eng A244:127CrossRefGoogle Scholar
  4. 4.
    Li SB, Zhang BS, Wen GW, Xie JX (2003) Mater Lett 57:1445CrossRefGoogle Scholar
  5. 5.
    Zhao H, Cheng YB (1999) Ceram Inter 25:353CrossRefGoogle Scholar
  6. 6.
    Barsoum MW, Houng B (1993) J Am Ceram Soc 76:1445CrossRefGoogle Scholar
  7. 7.
    Brodkin D, Kalidindi SR, Barsoum MW, Zavaliangos A (1996) J Am Ceram Soc 79:1945CrossRefGoogle Scholar
  8. 8.
    Song I, Wang L, Wixom M, Thompson LT (2000) J Mater Sci 35:2611CrossRefGoogle Scholar
  9. 9.
    Zhang XH, Zhu CC, Qu W, He XD, Kvanin VL (2002) Compos Sci Technol 62:2037CrossRefGoogle Scholar
  10. 10.
    Contreras L, Turrillas X, Vaughan GBM, Kvick Å, Rodríguez MA (2004) Acta Mater 52:4783CrossRefGoogle Scholar
  11. 11.
    Locci AM, Orrù R, Cao G, Munir ZA (2006) J Am Ceram Soc 89:848CrossRefGoogle Scholar
  12. 12.
    Choi Y, Rhee SW (1993) J Mater Sci 28:6669CrossRefGoogle Scholar
  13. 13.
    Lee WC, Chung SL (1997) J Am Ceram Soc 80:53CrossRefGoogle Scholar
  14. 14.
    Rangaraj L, Divakar C (2004) J Am Ceram Soc 87:1872CrossRefGoogle Scholar
  15. 15.
    Lee SK, Kim DH, Kim CH (1994) J Mater Sci 29:4125CrossRefGoogle Scholar
  16. 16.
    Gotman I, Koczak MJ, Shtessel E (1994) Mater Sci Eng A187:189CrossRefGoogle Scholar
  17. 17.
    Taheri-Nassaj E, Kobashi M, Choh T (1997) Scripta Mater 37:605CrossRefGoogle Scholar
  18. 18.
    Shen P, Zou BL, Jin SB, Jiang QC (2007) Mater Sci Eng A 454–455:300CrossRefGoogle Scholar
  19. 19.
    Gusev AI (1997) J Solid State Chem 133:205CrossRefGoogle Scholar
  20. 20.
    Liang YJ, Che YC (1993) Handbook of thermodynamic data of inorganics. Northeastern University Press, ShenYang (in Chinese)Google Scholar
  21. 21.
    Barin I (1995) Thermochemical data of pure substances, 3rd edn. Wiley-VCH Verlag GmbH, GermanyGoogle Scholar
  22. 22.
    Moore JJ, Feng HJ (1995) Prog Mater Sci 39:243CrossRefGoogle Scholar
  23. 23.
    Novikov NP, Borovinskaya IP, Merzhanov AG (1975) In: Merzhanov AG (ed) Combustion processes in chemical technology and metallurgy. Chernogolovka, p 174Google Scholar
  24. 24.
    Hardt AP, Phung PV (1973) Combust Flame 21:77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials, Department of Materials Science and EngineeringJilin UniversityChangchunP.R. China

Personalised recommendations