Journal of Materials Science

, Volume 42, Issue 24, pp 10007–10013 | Cite as

Preparation and characterization of BaSnO3 powders by hydrothermal synthesis from tin oxide hydrate gel

  • Wensheng LuEmail author
  • Helmut Schmidt


BaSnO3 powders have been prepared from the tin oxide hydrate gel and the Ba(OH)2 solution via hydrothermal synthesis route. The influence of the process parameters on the characteristics of BaSnO3 has been studied. A powder with the single-phase of BaSnO3 can be obtained only when the concentration of Ba(OH)2 solution is no less than 0.2 M and the ratio of Ba:Sn lies between 1.0 and 1.2. At a hydrothermal temperature of 330 °C or higher, uniform BaSnO3 powders can be directly prepared through hydrothermal reaction. When the hydrothermal temperature is lower than 250 °C, the as-prepared powder consists of BaSn(OH)6 that transforms through an amorphous phase into BaSnO3 by calcination at 260 °C. In the hydrothermal temperature range of 130–250 °C, a higher temperature can promote the crystallization of BaSnO3, increases its specific surface area and decreases the average particle size. The duration of the hydrothermal reaction affects the morphology of the powder particles. The effects of the nonaqueous solvents on the properties of powders have also been investigated.


SnO2 Amorphous Phase Average Particle Size Hydrothermal Synthesis Hydrothermal Reaction 



The authors acknowledge Dr. M. Quilitz for the help with the final version of the manuscript.


  1. 1.
    Subbarao EC (1981) Ferroelectrics 35:143CrossRefGoogle Scholar
  2. 2.
    Vivekanandan R, Kutty TRN (1988) Ceram Int 14:207CrossRefGoogle Scholar
  3. 3.
    Wernicke R (1978) Ber Dtsch Keram Ges 55:356Google Scholar
  4. 4.
    Brauer H (1970) Z Angew Phys 29:282Google Scholar
  5. 5.
    Moseley PT, Williams DE, Tofield BC (1988) Sensor Actuator 14:79CrossRefGoogle Scholar
  6. 6.
    Shimizu Y, Shimabukuro M, Arai A, Seiyama T (1989) J Electrochem Soc 136:1206CrossRefGoogle Scholar
  7. 7.
    Lampe U, Gerblinger J, Meixner H (1995) Sensor Actuator B 24–25:657CrossRefGoogle Scholar
  8. 8.
    Lampe U, Gerblinger J, Meixner H (1995) Sensor Actuator B 26–27:97CrossRefGoogle Scholar
  9. 9.
    Cerda J, Morante JR, Spetz AL (2003) Sensors 2:1164Google Scholar
  10. 10.
    Aguas MD, Morris L, Parkin IP (2002) J Mater Sci 37:375CrossRefGoogle Scholar
  11. 11.
    Tao S, Gao F, Liu X, Sorensen OT (2000) Sensor Actuator B 71:223CrossRefGoogle Scholar
  12. 12.
    Chu X (2004) Mater Sci Eng B 106:305CrossRefGoogle Scholar
  13. 13.
    Viviani M, Buscaglia MT, Buscaglia V, Leoni M, Nanni P (2001) J Europ Ceram Soc 21:1981CrossRefGoogle Scholar
  14. 14.
    Reddy CVG, Panorama SV, Rao VJ (2001) J Mater Sci: Mater Electron 12:137Google Scholar
  15. 15.
    Sano H, Herber RH (1968) J Inorg Nucl Chem 30:409CrossRefGoogle Scholar
  16. 16.
    Wagner G, Binder H (1958) Z Anorg Allegem Chem 297:328CrossRefGoogle Scholar
  17. 17.
    Kutty TRN, Vivekanadan R (1987) Mat Res Bull 22:1457CrossRefGoogle Scholar
  18. 18.
    Udawatte CP, Yoshimura M (2001) Mater Lett 47:7CrossRefGoogle Scholar
  19. 19.
    Jaeger L, Volker L, Mueller T, Abicht H-P, Roessel M, Goerls H (2004) Z Anorg Allg Chem 630:189CrossRefGoogle Scholar
  20. 20.
    Lu W, Schmidt H (2005) J Eur Ceram Soc 25:919CrossRefGoogle Scholar
  21. 21.
    Dutta PK, Asiaie R, Akbar SA, Zhu W (1994) Chem Mater 6:1542CrossRefGoogle Scholar
  22. 22.
    Chien AT, Speck JS, Lange FF, Daykin AC, Levi CG (1995) J Mater Res 10:1784CrossRefGoogle Scholar
  23. 23.
    Sato S, Murakata T, Yanagi H, Miyasaka F (1994) J Mater Sci 29:5657CrossRefGoogle Scholar
  24. 24.
    Heng CH, Ma J, Zhao Z, Qi L (1996) J Mater Sci Lett 15:1245CrossRefGoogle Scholar
  25. 25.
    Lu C, Lo S, Lin H (1998) Mater Lett 34:172CrossRefGoogle Scholar
  26. 26.
    Padmini P, Kutty TRN (1994) J Mater Chem 4:1875CrossRefGoogle Scholar
  27. 27.
    Kaiser A, Berger A, Sporn D, Bertganolli H, Ceram Trans, vol 51: Ceram Proc Sci Tech, Am Ceram Soc, Inc. 1995, p 51Google Scholar
  28. 28.
    Avudaithai M, Kutty TRN (1987) Mat Res Bull 22:641CrossRefGoogle Scholar
  29. 29.
    Chen D, Xu R (1998) J Mater Chem 8:965CrossRefGoogle Scholar
  30. 30.
    Kutty TRN, Vivekanandan R (1988) Mater Chem Phys 19:534CrossRefGoogle Scholar
  31. 31.
    Somiya S, Adv Ceram 3 (Meet.), 3rd (1990), Meeting date 1988, p 207Google Scholar
  32. 32.
    Lin J, Duh J (1997) J Am Ceram Soc 80:92CrossRefGoogle Scholar
  33. 33.
    Schrerrer P, Gött. Nachrichten, conference on July 26, 1918, p 99Google Scholar
  34. 34.
    Buscaglia MT, Leoni M, Viviani M, Buscaglia V (2003) J Mater Res 18:560CrossRefGoogle Scholar
  35. 35.
    Vivekanandan R, Kutty TRN (1988) Ceram Inter 14:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Leibniz-Institut fuer Neue Materialien gGmbHSaarbrueckenGermany
  2. 2.Universitaet des Saarlandes, Lehrstuhl fuer Neue MaterialienSaarbruecken-DudweilerGermany

Personalised recommendations