Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10118–10123 | Cite as

Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties

  • Jyh-Tsung Lee
  • Yung-Ju Chu
  • Fu-Ming Wang
  • Chang-Rung Yang
  • Chia-Chen LiEmail author
Article

Abstract

The electrochemical behavior of aqueous processing lithium cobalt oxide (LiCoO2) cathodes used hydrogen peroxide (H2O2)-treated vapor-grown carbon fibers (VGCFs) as a conductive agent for lithium-ion batteries has been investigated and improved. The sedimentation experiments show that the dispersibility in water of H2O2-treated VGCFs is better than that of KS-6 (flaky graphite) or as-received VGCFs. This improvement is due to the surface chemistry of H2O2-treated VGCFs has become more hydrophilic that was evidenced by its significant shift of iso-electric point (I.E.P) from pH 6.7 to 5.0. As a result, the H2O2-treated VGCFs can be well-dispersed in the LiCoO2 electrode which was observed by scanning electron microscope. Furthermore, the rate capability results of electrodes show that addition with H2O2-treated VGCFs has better performance than that with KS-6 or as-received VGCFs.

Keywords

Rate Capability Styrene Butadiene Rubber Conductive Agent Lithium Cobalt Oxide LiCoO2 Cathode 

Notes

Acknowledgements

Funding for this study was provided by the National Science Council of the Republic of China under Grant No: NSC 95-2221-E-027-034.

References

  1. 1.
    Dey AN, Sulliva BP (1970) J Electrochem Soc 117:222CrossRefGoogle Scholar
  2. 2.
    Wolverton C, Zunger A (1998) J Electrochem Soc 145:2424CrossRefGoogle Scholar
  3. 3.
    Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599CrossRefGoogle Scholar
  4. 4.
    Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO (2001) J Power Sources 101:1CrossRefGoogle Scholar
  5. 5.
    Liu Z, Yu A, Lee JY (1998) J Power Sources 74:228CrossRefGoogle Scholar
  6. 6.
    Kim KM, Jeon WS, Chung IJ, Chang SH (1999) J Power Sources 83:108CrossRefGoogle Scholar
  7. 7.
    Kosova N, Devyatkina E, Osintsey D (2004) J Mater Sci 39:5031CrossRefGoogle Scholar
  8. 8.
    Kim J, Kim B, Lee JG, Cho J, Park B (2005) J Power Sources 139:289CrossRefGoogle Scholar
  9. 9.
    Li CC, Lee JT, Lo CY, Wu MS (2005) Electrochem Solid State Lett 8:A509CrossRefGoogle Scholar
  10. 10.
    Li CC, Lee JT, Peng XW (2006) J Electrochem Soc 153:A809CrossRefGoogle Scholar
  11. 11.
    Yang HQ, Li DP, Han S, Li N, Lin BX (1995) J Power Sources 58:221CrossRefGoogle Scholar
  12. 12.
    Saekil S, Lee J, Zhang Q, Saito F (2004) Int J Miner Process 74S:S373CrossRefGoogle Scholar
  13. 13.
    Nahass P, Rhine WE, Pober RL, Bowen HK, Robbins WL (1990) In: Nair KM, Pohanka R, Buchanan RC (eds) Ceramic transactions, vol 15. American Ceramic Society, Westerville, p 355Google Scholar
  14. 14.
    Endo M, Kim YA, Takeda T, Hong SH, Matusita T, Hayashi T, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  15. 15.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Electrochem Soc 152:A1499CrossRefGoogle Scholar
  16. 16.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146:711CrossRefGoogle Scholar
  17. 17.
    Her LJ, Hong JL, Chang CC (2006) J Power Sources 157:457CrossRefGoogle Scholar
  18. 18.
    Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253CrossRefGoogle Scholar
  19. 19.
    Jia Z, Wang Z, Liang J, Wei B, Wu D (1999) Carbon 37:903CrossRefGoogle Scholar
  20. 20.
    Saito T, Matsushige K, Tanaka K (2002) Physica B 323:280CrossRefGoogle Scholar
  21. 21.
    Wang Y, Wu J, Wei F (2003) Carbon 41:2939CrossRefGoogle Scholar
  22. 22.
    Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) J Disper Sci Technol 24:1CrossRefGoogle Scholar
  23. 23.
    Hirsch A (2002) Angew Chem Int Ed 41:1853CrossRefGoogle Scholar
  24. 24.
    Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Adv Mater 11:834CrossRefGoogle Scholar
  25. 25.
    Li CC, Lin JL, Huang SJ, Lee JT, Chen CH (2007) Colloids Surf A 297:275CrossRefGoogle Scholar
  26. 26.
    Goto H, Furuta T, Fujiwara Y, Ohashi T (2003) US patent 20030007924A1Google Scholar
  27. 27.
    Hernadi K, Siska A, Thien-Nga L, Forrob L, Kiricsi I (2001) Solid State Ionics 141:203CrossRefGoogle Scholar
  28. 28.
    Gil A, de la Puente G, Grange P (1997) Microporous Mater 12:51CrossRefGoogle Scholar
  29. 29.
    Concheso A, Santamaría R, Menéndez R, Jiménez-Mateos JM, Alcántara R, Lavela P, Tirado JL (2006) Electrochim Acta 52:1281CrossRefGoogle Scholar
  30. 30.
    Xing Y, Li L, Chusuei CC, Hull RV (2005) Langmuir 21:4185CrossRefGoogle Scholar
  31. 31.
    Hontora-Lucas C, Lopez-Peinado AJ, Lopez-Gonzales JD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Carbon 33:1585CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jyh-Tsung Lee
    • 1
    • 2
  • Yung-Ju Chu
    • 3
    • 4
  • Fu-Ming Wang
    • 1
  • Chang-Rung Yang
    • 1
  • Chia-Chen Li
    • 3
    • 4
    Email author
  1. 1.Material and Chemical Research LaboratoriesIndustrial Technology Research InstituteChutungTaiwan, ROC
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Institute of Materials Science and EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  4. 4.Department of Materials & Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC

Personalised recommendations