Journal of Materials Science

, Volume 42, Issue 24, pp 9978–9982 | Cite as

Synthesis of γ-MnOOH nanorods and their isomorphous transformation into β-MnO2 and α-Mn2O3 nanorods

  • Fu ZhouEmail author
  • Xuemei Zhao
  • Cunguang Yuan
  • Hai Xu


γ-MnOOH nanorods with different diameters were synthesized by a simple one-step polymer-assisted hydrothermal method using 50% (wt.%) Mn(NO3)2 solution and PEG-10000 as reagents. The diameters of as-synthesized γ-MnOOH nanorods were well controlled by simply varying the volume of the 50% Mn(NO3)2 solution. The calcination behavior of the as-synthesized γ-MnOOH nanorods was studied. Nanorods of β-MnO2 and α-Mn2O3 were synthesized by calcination at 350 and 600 °C for 1 h respectively.


Manganese Oxide Anhydrous Alcohol Calculated Weight Loss Manganese Oxide Nanoparticles Uniform Nanorods 


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Han W, Fan SS, Li Q, Hu Y (1997) Science 277:1287CrossRefGoogle Scholar
  3. 3.
    Coleman NRB, Morris MA, Spalding TR, Holmes JD (2001) J Am Chem Soc 123:187CrossRefGoogle Scholar
  4. 4.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  5. 5.
    Duan XF, Lieber CM (2000) J Am Chem Soc 122:188CrossRefGoogle Scholar
  6. 6.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  7. 7.
    Li YD, Wang JW, Deng ZX, Wu YY, Sun XM, Yu DP, Yang PD (2001) J Am Chem Soc 123:9904CrossRefGoogle Scholar
  8. 8.
    Dai H, Wong EW, Lu YZ et al (1995) Nature 375:769CrossRefGoogle Scholar
  9. 9.
    Jiang XC, Xie Y, Lu J, Zhu LY, He W, Qian YT (2001) J Mater Chem 11:1775CrossRefGoogle Scholar
  10. 10.
    Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Chem Mater 14:4736CrossRefGoogle Scholar
  11. 11.
    Wang X, Li YD (2002) Chem Commun 7:764CrossRefGoogle Scholar
  12. 12.
    Wang X, Li YD (2002) J Am Chem Soc 124(12):2880CrossRefGoogle Scholar
  13. 13.
    Wang X, Li YD (2003) Chem Eur J 9(1):300CrossRefGoogle Scholar
  14. 14.
    Zhang WX, Yang ZH, Liu Y, Tang SP, Han XZ, Chen M (2004) J Cryst Growth 263:394CrossRefGoogle Scholar
  15. 15.
    Xi GC, Peng Y, Zhu YC, Xu LQ, Zhang WQ, Yu WC, Qian YT (2004) Mater Res Bull 39:1641CrossRefGoogle Scholar
  16. 16.
    Yang XJ, Tang WP, Feng Q, Ooi K (2003) Cryst Growth Des 3(3):409CrossRefGoogle Scholar
  17. 17.
    Liu ZH, Ooi K (2003) Chem Mater 15:3696CrossRefGoogle Scholar
  18. 18.
    Yang XJ, Makita Y, Liu ZH, Sakane K, Ooi K (2004) Chem Mater 16:5581CrossRefGoogle Scholar
  19. 19.
    El-Deab MS, Ohsaka T (2006) Angew Chem Int Ed 45:5963CrossRefGoogle Scholar
  20. 20.
    Xia YY, Yoshio M (1995) J Power Sources 57(1–2):125CrossRefGoogle Scholar
  21. 21.
    Nakamura H, Motooka K, Noguchi H, Yoshio M (1999) J Power Sources 81–82:632CrossRefGoogle Scholar
  22. 22.
    Yoshio M, Nakamura H, Xia YY (1999) Electrochim Acta 45(1–2):273CrossRefGoogle Scholar
  23. 23.
    Ohsaka T, Mao LQ, Arihara K, Sotomura T (2004) Electrochem Commun 6(3):273CrossRefGoogle Scholar
  24. 24.
    Mao LQ, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48(8):1015CrossRefGoogle Scholar
  25. 25.
    Mao LQ, Arihara K, Sotomura T, Ohsaka T (2004) Electrochim Acta 49(15):2515CrossRefGoogle Scholar
  26. 26.
    Yin HB, Yamamoto T, Wada Y, Yanagida S (2004) Mater Chem Phys 83:66CrossRefGoogle Scholar
  27. 27.
    Pearson PG (1968) J Chem Educ 45:581CrossRefGoogle Scholar
  28. 28.
    Kim JG, Tai WP, Lee KJ, Cho WS (2004) Ceram Int 30:2223CrossRefGoogle Scholar
  29. 29.
    Yang ZH, Zhang YC, Zhang WX, Wang X, Qian YT, Wen XG, Yang SH (2006) J Solid State Chem 179:679CrossRefGoogle Scholar
  30. 30.
    Zhang WX, Yang ZH, Wang X, Zhang YC, Wen XG, Yang SH (2006) Catal Commun 7:408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryChina University of PetroleumQingdaoP.R. China
  2. 2.Center for Bioengineering and BiotechnologyChina University of PetroleumQingdaoP.R. China

Personalised recommendations