Journal of Materials Science

, Volume 42, Issue 24, pp 10047–10051 | Cite as

Synthesis and improved photoluminescence of Eu:ZnO phosphor

  • R. KrishnaEmail author
  • D. Haranath
  • S. P. Singh
  • Harish Chander
  • A. C. Pandey
  • D. Kanjilal


Zinc oxide doped with europium has been prepared by high temperature calcination method using ZnO, Eu2O3, and LiOH. Structural characterization by X-ray diffraction and optical studies by photoluminescence spectroscopy together give evidence that Eu3+ is going to the substitutional site of Zn2+. The concentration of chemicals used, sintering temperature, and time are optimized with photoluminescence excitation spectroscopy for a sharp and intense red signal which is a signature of Eu3+. Characteristic red emission at 607 nm is observed using high-energy excitation along with the native deep center emission of ZnO peaking around 525 nm.


Zinc Oxide LiOH Eu2O3 High Temperature Calcination Photoluminescence Spectroscopy 



One of the authors RK is thankful to University Grants Commission (UGC) for financial support. We would like to extend our gratitude to Mr. K. N. Sood for SEM measurements.


  1. 1.
    Rakov N, Ramos FE, Hirata G, Xiao M (2003) Appl Phys Lett 83:272CrossRefGoogle Scholar
  2. 2.
    Ishizumi H, Kanemitsu Y (2005) Appl Phys Lett 86:253106CrossRefGoogle Scholar
  3. 3.
    Bhargava RN, Chhabra V, Som T, Ekimov A, Taskar N (2002) Phys Stat Sol (b) 229:897CrossRefGoogle Scholar
  4. 4.
    Kawasaki M, Ohtomo A, Ohkubo I, Koinuma H, Tang ZK, Yu P, Wong GKL, Zhang BP, Segawa Y (1998) Mater Sci Eng B 56:239CrossRefGoogle Scholar
  5. 5.
    Bagnall DM, Chen YF, Shen MY, Zhu Z, Yao GT (1998) J Cryst Growth 184/185:605CrossRefGoogle Scholar
  6. 6.
    Li ZL, Xin GC, Jing ZJ, Tao HJ (2005) Chin Phys Lett 22:122CrossRefGoogle Scholar
  7. 7.
    Julian B, Corberan R, Cordoncillo E, Escribano P, Viana B, Sanchez C (2005) Nanotechnology 16:2707CrossRefGoogle Scholar
  8. 8.
    Falcony C, Ortiz A, Garcia M, Helman JS (1988) J Appl Phys 63:2378CrossRefGoogle Scholar
  9. 9.
    Ortiz A, Falcony C, Garcia M, Sanchez A (1987) J Phys D: Appl Phys 20:670CrossRefGoogle Scholar
  10. 10.
    Voort DV, Imhof A, Blasse G (1992) J Solid State Chem 96:311CrossRefGoogle Scholar
  11. 11.
    Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Langmuir 20:3528CrossRefGoogle Scholar
  12. 12.
    Garcia R, Hirata GA, Mckittick J (2001) J Mater Res 16:1059CrossRefGoogle Scholar
  13. 13.
    Byeon SH, Ko MG, Park JC, Kim DK (2002) Chem Mater 14:603CrossRefGoogle Scholar
  14. 14.
    Sun LD, Qian C, Liao CS, Wang XL, Yan CH (2001) Solid State Commun 119:393CrossRefGoogle Scholar
  15. 15.
    Sohn SH, Hyun DG, Yamada A, Hamakawa Y (1993) Appl Phys Lett 62:991CrossRefGoogle Scholar
  16. 16.
    Yi SS, Bae JS, Moon BK, Jeong JH, Park JC, Kim IW (2002) Appl Phys Lett 28:3344CrossRefGoogle Scholar
  17. 17.
    Yeh SM, Su CS (1996) Mater Sci Eng B 38:245CrossRefGoogle Scholar
  18. 18.
    Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA (1996) J Appl Phys 79:7983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Krishna
    • 1
    Email author
  • D. Haranath
    • 2
  • S. P. Singh
    • 2
  • Harish Chander
    • 2
  • A. C. Pandey
    • 1
  • D. Kanjilal
    • 3
  1. 1.Physics DepartmentAllahabad UniversityAllahabadIndia
  2. 2.Division of Electronic MaterialsNational Physical LaboratoryNew DelhiIndia
  3. 3.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations