Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10000–10006 | Cite as

Control of solidified structures in aluminum–silicon alloys by high magnetic fields

  • Qiang WangEmail author
  • Chun-jiang Wang
  • Tie Liu
  • Kai Wang
  • Ji-cheng He
Article

Abstract

In order to investigate the effects of high magnetic fields on the as-solidified structures of Al alloys, solidification experiments of hypoeutectic and hypereutectic Al–Si alloys under various high magnetic field conditions (up to 12 T) have been conducted. It was found that uniform magnetic fields and gradient magnetic fields affect the solidification process by Lorentz force and magnetization force, respectively. The primary silicon crystals of hypereutectic Al–Si alloys are distributed, relatively, homogeneously under uniform magnetic fields, whereas they congregate near the top surface or bottom of samples by the combined action of buoyancy and magnetization force under gradient magnetic fields. The results indicate that it is possible to control the behaviors of reinforced particles in the metal matrix and improve the material performances by using high magnetic fields in the solidification process of metal matrix composites. The experiments also showed that high magnetic fields decrease the interlamellar spacing of the eutectic structure, while there exists a certain optimum value of magnetic intensity corresponding to the minimum value of interlamellar spacing, and magnetic energy is capable of influencing thermodynamic equilibrium of solidifying system and makes the content of eutectic aluminum in eutectic structures increased.

Keywords

Solidification Process Lorentz Force Magnetic Energy High Magnetic Field Magnetic Field Condition 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 50374027), the Program for New Century Excellent Talents in University (Grant No. NCET-06-0289) and the 111 project (Grant No. B07015).

References

  1. 1.
    Asai S (2003) In: Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 1Google Scholar
  2. 2.
    Asai S (2000) Sci Technol Adv Mater 1:191CrossRefGoogle Scholar
  3. 3.
    Jones TB (1979) J Appl Phys 50:5057CrossRefGoogle Scholar
  4. 4.
    Garcia A, Moron C, Maganto F (2003) Sensor Actuat A-Phys 106:108CrossRefGoogle Scholar
  5. 5.
    Negrini F, Fabbri M, Zuccarini M, Takeuchi E (2000) Energy Convers Manage 41:1687CrossRefGoogle Scholar
  6. 6.
    Asai S (2004) Model Simul Mater Sci Eng 12:R1CrossRefGoogle Scholar
  7. 7.
    Asai S, Sassa K, Tahashi M (2003) Sci Technol Adv Mater 4:455CrossRefGoogle Scholar
  8. 8.
    Schneider-Muntau HJ, Brandt BL, Brunel LC, Cross TA, Edison AS, Marshall AG, Reyes AP (2004) Physica B 346–347:643CrossRefGoogle Scholar
  9. 9.
    Perenboom JAAJ, Wiegers SAJ, Christianen PCM, Zeitler U, Maan JC (2004) Physica B 346–347:659CrossRefGoogle Scholar
  10. 10.
    Kang JY, Tozawa S (1996) Acta Phys Sin 45:324Google Scholar
  11. 11.
    Wang Q, Wang CJ, Wang EG, He JC (2005) Acta Metall Sin (in Chinese) 41:128Google Scholar
  12. 12.
    Wang H, Ren ZM, Deng K, Xu KD (2002) Acta Metall Sin (in Chinese) 38:41Google Scholar
  13. 13.
    Morikawa H, Sassa K, Asai S (1998) Mater Trans JIM 39:814CrossRefGoogle Scholar
  14. 14.
    Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K (2003) In: Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 459Google Scholar
  15. 15.
    Nakada M, Mori K, Nishioka S, Tsutsimi H (1997) ISIJ Int 37:358CrossRefGoogle Scholar
  16. 16.
    Yasuda H, Ohnaka I, Kawakami O, Ueno K, Kishio K (2003) ISIJ Int 43:942CrossRefGoogle Scholar
  17. 17.
    Wang Q, Wang EG, He JC, Hu K, Takahashi K, Watanabe K (2003) In Asai S, Fautrelle Y, Gillon P, Durand F (eds) Proceedings of the 4th International Conference on Electromagnetic Processing of Materials, Lyon, The Company Forum Edition, Lyon, p 464Google Scholar
  18. 18.
    Wang Q, Wang CJ, Pang XJ, He JC (2004) Chinese J Mater Res (in Chinese) 18:568Google Scholar
  19. 19.
    Ikezoe Y, Kaihatsu T, Uetake H, Hirota N, Nakagawa J, Kitazana K (2000) Trans Mater Res Soc Jpn 25:77Google Scholar
  20. 20.
    Robert C (1982–1983) In: CRC Handbook of Chemistry and Physics (the 63rd edition), CRC Press, Inc., Florida, p B-244Google Scholar
  21. 21.
    The Japan Institute of Metals (1993) In: Data handbook of metals (the Third Edition, in Japanese), Maruzen Co. Ltd, Shizuoka, p 18Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Qiang Wang
    • 1
    Email author
  • Chun-jiang Wang
    • 1
  • Tie Liu
    • 1
  • Kai Wang
    • 1
  • Ji-cheng He
    • 1
  1. 1.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education)Northeastern UniversityShenyangP.R. China

Personalised recommendations