Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9491–9494 | Cite as

Laser nanostructuring of EB-PVD thermal barrier coatings for ultra-low thermal conductivity

  • Pal MolianEmail author
Letter

In recent years, there are serious efforts to reduce thermal conductivity of thermal barrier coatings (TBC) in order to (i) improve the TBC durability, reduce the metal temperature, and retard the thermally-induced failure; (ii) improve engine efficiency by allowing it to operate at higher temperatures; and (iii) allow designers to reduce the TBC thickness and thereby decrease the significant centrifugal load that the mass of the TBCs imposes on the rotating turbine engine components [1, 2]. Nanoparticle structuring of TBC has the potential to offer ultra-low thermal conductivity in addition to providing other desirable properties such as low density, high thermal expansion, high strength, and high toughness. Hence, in this study, an array of thermally stable, uniform nanoparticles, and nanoporous structures (<100 nm) in electron beam-deposited TBC coatings were synthesized by the use of femtosecond laser irradiation followed by a dip in nanostabilizing-slurry. In addition, the effect...

Keywords

Fume Silica Thermal Barrier Coating Recast Layer Coulomb Explosion Thermal Barrier Coating 

References

  1. 1.
    Leyens C et al (2001) Z Metallkd 92:762Google Scholar
  2. 2.
    Padture N, Gell M, Jordan E (2002) Science 296:280CrossRefGoogle Scholar
  3. 3.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  4. 4.
    Klemens PG (1993) In: Wills KE, Dinwiddie RB, Graves RS (eds) Thermal conductivity, vol 23. Technomics, Lancaster, PA, p 209Google Scholar
  5. 5.
    Peters M, Leyens C, Schulz U, Kaysser WA (2001) Adv Eng Mater 3(4):193CrossRefGoogle Scholar
  6. 6.
    Eaton HE, Linsey JR, Dinwiddie RB (1994) In: Tong TW (ed) Thermal conductivity, vol 22. Technomic, Lancaster, PA, 289Google Scholar
  7. 7.
    Peters M, Fritscher K, Staniek G, Kaysser WA, Schultz U (1997) Materialwissen Werkstofftech 28:357CrossRefGoogle Scholar
  8. 8.
    Fascko S, Bobek T, Kurz H, Kyrsta S, Cremer R (2002) Appl Phys Lett 80:130CrossRefGoogle Scholar
  9. 9.
    Schwarz-Selinger T, Cahill D, Chen SC, Moon SJ, Grigoropoulos CP (2001) Phys Rev B 64:155323CrossRefGoogle Scholar
  10. 10.
    Klemens PG, Gell M (1998) Mater Sci Eng A245:143CrossRefGoogle Scholar
  11. 11.
    Gu S, Lu T, Haas D, Wadley H (2001) Acta Mater 49:973CrossRefGoogle Scholar
  12. 12.
    Zhu D, Miller R (2004) Int J Appl Ceramic Technol 1:86CrossRefGoogle Scholar
  13. 13.
    US Patent 7125536 (2006) Nano-structured particles with high thermal stability, October 24, 2006Google Scholar
  14. 14.
    Slifka AJ (2000) J Res Natl Inst Stand Technol 105:591CrossRefGoogle Scholar
  15. 15.
    Cheng HP, Gillaspy JD (1997) Phys Rev B 55:2628CrossRefGoogle Scholar
  16. 16.
    Schneider DH, Briere MA, McDonald J, Biersack J (1993) Radiat Eff Def Solids 127:113CrossRefGoogle Scholar
  17. 17.
    Stoian R, Ashkenasi D, Rosenfeld A, Campbell EEB (2000) Phys Rev B 62:13167CrossRefGoogle Scholar
  18. 18.
    Huang SM, Hong MH, Lukiyanchuk B, Chong TC (2003) Appl Phys A 77:293Google Scholar
  19. 19.
    Pedraza AJ, Fowlkes JD, Guan YF (2003) Appl Phys A 77:277Google Scholar
  20. 20.
    http://www.inframat.com/SPS.htmGoogle Scholar
  21. 21.
    http://www.atfinet.comGoogle Scholar
  22. 22.
    Europe Patent EP1464723, Thermal barrier coating having nano scale featuresGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Laboratory for Lasers, MEMS and NanotechnologyIowa State UniversityAmesUSA

Personalised recommendations