Journal of Materials Science

, Volume 42, Issue 24, pp 10074–10079 | Cite as

Comparation about efficiency of Al–10Sr and Mg–10Sr master alloys to grain refinement of AZ31 magnesium alloy

  • Mingbo YangEmail author
  • Fusheng Pan
  • Renju Cheng
  • Aitao Tang


In the article, the effects of Al–10Sr and Mg–10Sr master alloys on the grain refinement of AZ31 magnesium alloy, are compared and analyzed. The results indicate that adding Al–10Sr or Mg–10Sr master alloys to AZ31 magnesium alloy could effectively reduce its grain size, but the refinement efficiency of Mg–10Sr master alloys is higher than that of the Al–10Sr master alloys. In addition, for a given melt holding time, the refinement efficiency of the two master alloys respectively increase with Sr adding amount increasing from 0 to 0.1 wt%, and the increasing laws are similar. For a given Sr adding amount, the refinement efficiency of Al–10Sr mater alloy gradually increases with the melt holding time increasing from 20 to 80 min, but its changing is not obvious for the Mg–10Sr mater alloy. The difference of refinement efficiency for the Al–10Sr and Mg–10Sr master alloys might be related to the dissolution modes and rates of Al4Sr and Mg17Sr2 phases in the melt of AZ31 magnesium alloy.


Magnesium Alloy Master Alloy AZ31 Magnesium Alloy Refinement Efficiency Mg17Al12 Phase 



The present work was supported by both the High-tech Research and Development Program of China (863) (No. 2001AA331050) and Chongqing Science and Technology Commission (No. 2006AA4012-9-6).


  1. 1.
    Luo AA (2004) Inter Mater Rev 49:13CrossRefGoogle Scholar
  2. 2.
    Yang MB, Pan FS, Zhang J, Zhang J (2005) Mater Sci Forum 488–499:923CrossRefGoogle Scholar
  3. 3.
    Pan FS, Yang MB, Zhang DF (2005) Mater Sci Forum 488–499:413CrossRefGoogle Scholar
  4. 4.
    Pan FS, Yang MB, Ma YL, Cole GS (2007) Mater Sci Forum 546–549:37CrossRefGoogle Scholar
  5. 5.
    Lee S, Lee SH, Kim DH (1998) Metall Mater Trans 29A:l22lGoogle Scholar
  6. 6.
    Aliravci CA, Gruzleski E, Dimayuga FC (1992) AFS Trans 100:353Google Scholar
  7. 7.
    Gruzleski JE, Aliravci CA (1992) Low porosity, fine grain sized strontium-treated magnesium alloy casting [P]. US patent, NO5143564Google Scholar
  8. 8.
    Zhang ZH, Bian XF, Wang Y (2002) J Cryst Growth 243:531CrossRefGoogle Scholar
  9. 9.
    Zhang ZH, Bian XF, Wang Y (2002) Mater Res Bull 37:2303CrossRefGoogle Scholar
  10. 10.
    Qi XG, Bian XF, Wang Y (2000) Foundry (in Chinese) 49:321Google Scholar
  11. 11.
    Martinez JD, Cisneros MA, Valtierra S (2005) Scr Mater 52:439CrossRefGoogle Scholar
  12. 12.
    Srinivasan A, Pillai UT, Swaminathan J, Das SK, Pai BC (2006) J Mater Sci 41:6087, DOI: 10:1007/s10853-006-0643-1Google Scholar
  13. 13.
    Nam KY, Song DH, Lee CW (2006) Mater Sci Forum 510–511:238CrossRefGoogle Scholar
  14. 14.
    Zhao P, Wang QD, Zai CQ, Zhu YP (2007) Mater Sci Eng 444A:318CrossRefGoogle Scholar
  15. 15.
    Hirai K, Somekaw H, Takigaw Y (2005) Mater Sci Eng 403A:276CrossRefGoogle Scholar
  16. 16.
    Zeng XQ, Wang YX, Ding WJ (2006) Metall Mater Trans 37A:1333CrossRefGoogle Scholar
  17. 17.
    Chen RJ, Tang AT, Yang MB, Pan FS (2007) Mater Sci Forum 546–549:183CrossRefGoogle Scholar
  18. 18.
    Bai J, Sun YS, Xun S (2006) Mater Sci Eng 419A:181Google Scholar
  19. 19.
    Liu XL, Peng XD, Xie WD, Wei QY (2005) Mater Sci Forum 488–499:31CrossRefGoogle Scholar
  20. 20.
    Banerji A, Reif W (1994) J Mater Sci 29:1958, DOI: 10.1007/BF00351320Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mingbo Yang
    • 1
    • 2
    Email author
  • Fusheng Pan
    • 2
  • Renju Cheng
    • 2
  • Aitao Tang
    • 2
  1. 1.Materials Science & Engineering CollegeChongqing Institute of TechnologyChongqingP.R. China
  2. 2.Materials Science & Engineering CollegeChongqing UniversityChongqingP.R. China

Personalised recommendations