Journal of Materials Science

, Volume 42, Issue 24, pp 10058–10064 | Cite as

Paramagnetic silica-coated gold nanoparticles

  • Corneliu Ghica
  • Petre IonitaEmail author


Water soluble gold nanoparticles, obtained by the reduction of the gold (III) chloride with sodium borohydride in the presence of citric acid or thioctic acid, were covered with a paramagnetic silica layer using the Stober method, yielding a hybrid metallic-inorganic nanomaterial (gold nanoparticles, with an average size of 5 nm, embedded into silica nanoparticles, with an average size of 100 nm). The paramagnetic silica layer was formed by copolymerization of a paramagnetic silica precursor (derived from 3-aminopropyltrimethoxysilane) with tetramethyorthosilicate. The paramagnetic silica precursor was obtained by coupling 3-aminopropyltrimethoxysilane with 3-carboxy-proxyl free radical. TEM pictures show that each silica nanoparticle of about 100 nm in size embedded about 10 gold nanoparticles. These hybrid nanoparticles are quite stable and exhibit the expected paramagnetic characteristics, as seen by electron paramagnetic resonance. The accessibility of methanol through the silica layer was also studied. Depending on the capping ligands of the gold nanoparticles (citric or thioctic acid), different silica networks are formed, as seen by the mobility of the spin-label inside the silica layer. The EPR spectra showed that the paramagnetic silica layer is very robust and the mobility of the spin-probe inside the silica layer is very little affected by methanol. However, if spin-labeled thioctic acid protected gold nanoparticles were used in the material synthesis, the mobility of the spins attached to the gold surface is quite high in the presence of methanol, while the spins embedded into the silica layer remains immobilized.


Electron Paramagnetic Resonance Gold Nanoparticles Electron Paramagnetic Resonance Spectrum Silica Nanoparticles Electron Paramagnetic Resonance Signal 



This research was funded by CNCSIS (Grant 5/2007).


  1. 1.
    Liu S, Han M (2005) Adv Funct Mater 15:961CrossRefGoogle Scholar
  2. 2.
    Kim J, Lee JE, Jang Y, Kim DW, An K, Yu JH, Hyeon T (2006) Angew Chem Int Ed 45:1CrossRefGoogle Scholar
  3. 3.
    Zhelev Z, Ohba H, Bakalova R (2006) J Am Chem Soc 128:6324CrossRefGoogle Scholar
  4. 4.
    Guari Y, Thieuleux C, Mehdi A, Reye C, Corriu RJP, Gallardo SG, Plilippot K, Chaudret B (2003) Chem Mat 15:2017CrossRefGoogle Scholar
  5. 5.
    Alonso B, Clinard C, Durand D, Veron E, Massiot D (2005) Chem Commun 1746Google Scholar
  6. 6.
    Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG, Fox AP, Keating CD, Musick MD, Natan MJ (1996) Langmuir 12:2353CrossRefGoogle Scholar
  7. 7.
    Roux S, Garcia B, Bridot JL, Salome M, Marquette C, Lemelle L, Gillet P, Blum L, Perriat P, Tillement O (2005) Langmuir 21:2526CrossRefGoogle Scholar
  8. 8.
    Chechik V, Wellsted HJ, Korte A, Gilbert BC, Caldararu H, Ionita P, Caragheorgheopol A (2004) Faraday Discuss 125:279CrossRefGoogle Scholar
  9. 9.
    Ionita P, Tudose M, Constantinescu T, Balaban AT, Appl Surf Sci (accepted)Google Scholar
  10. 10.
    Wheeler KE, Lees NS, Gurbiel RJ, Hatch SL, Nocek JM, Hoffman BM (2004) J Am Chem Soc 126:13459CrossRefGoogle Scholar
  11. 11.
    Ottaviani MF, Mollo LJ (1997) Colloid Interface Sci 191:154CrossRefGoogle Scholar
  12. 12.
    Ruthstein S, Frydman V, Goldfarb D (2004) J Phys Chem B 108:9016CrossRefGoogle Scholar
  13. 13.
    Baute D, Frydman V, Zimmermann H, Kababya S, Goldfarb D (2005) J Phys Chem B 109:7807CrossRefGoogle Scholar
  14. 14.
    Ionita P, Caragheorgheopol A, Gilbert BC, Chechik V (2004) Langmuir 20:11544CrossRefGoogle Scholar
  15. 15.
    Ionita P, Gilbert BC, Chechik V (2005) Angew Chem Int Ed 44:3720CrossRefGoogle Scholar
  16. 16.
    Kashiwagi Y, Chiba S, Anzai J (2003) New J Chem 27:1545CrossRefGoogle Scholar
  17. 17.
    Ciriminna R, Blum J, Avnir D, Pagliaro M (2000) Chem Commun 1441Google Scholar
  18. 18.
    Fey T, Fischer H, Bachmann S, Albert K, Bolm C (2001) J Org Chem 66:8154CrossRefGoogle Scholar
  19. 19.
    Ciriminna R, Bolm C, Fey T, Pagliaro M (2002) Adv Synth Catal 344:159CrossRefGoogle Scholar
  20. 20.
    Caldararu H, Caragheorgheopol A, Savonea F, Macquarrie DJ, Gilbert BC (2003) J Phys Chem B 107:6032CrossRefGoogle Scholar
  21. 21.
    Graf C, Dembski S, Hoffman A, Ruhl E (2006) Langmuir 22:5604CrossRefGoogle Scholar
  22. 22.
    Hall SR, Davis SA, Mann S (2000) Langmuir 16:1454CrossRefGoogle Scholar
  23. 23.
    Goldman S, Bruno G, Freed JJ (1972) Phys Chem 76:1858CrossRefGoogle Scholar
  24. 24.
    Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2003) Langmuir 19:7628CrossRefGoogle Scholar
  25. 25.
    Bagwe RP, Hillard LR, Tan W (2006) Langmuir 22:4357CrossRefGoogle Scholar
  26. 26.
    Osterloh F, Hiramatsu H, Porter R, Guo T (2004) Langmuir 20:5553CrossRefGoogle Scholar
  27. 27.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Marzan LML (2005) J Colloid Interface Sci 283:392CrossRefGoogle Scholar
  28. 28.
    Chen W, Cai WP, Liang CH, Zhang LD (2001) Mat Res Bull 36:335CrossRefGoogle Scholar
  29. 29.
    Santos IP, Juste JP, Marzan LML (2006) Chem Mat 18:2465CrossRefGoogle Scholar
  30. 30.
    Poovarodom S, Bass JD, Hwang SJ, Katz A (2005) Langmuir 21:12348CrossRefGoogle Scholar
  31. 31.
    Gu JL, Shi JL, You GJ, Xiong LM, Qian SX, Hua ZL, Chen HR (2005) Adv Mat 17:557CrossRefGoogle Scholar
  32. 32.
    Tsubokawa N, Kinoto T, Endo T (1995) J Mol Catal 101:45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.National Institute for Materials PhysicsBucharest-MagureleRomania
  2. 2.Institute of Physical ChemistryBucharestRomania

Personalised recommendations