Journal of Materials Science

, Volume 42, Issue 24, pp 10203–10218 | Cite as

Crystallization of CaHf1−xZrxTi2O7 (0 ≤ x ≤ 1) zirconolite in SiO2–Al2O3–CaO–Na2O–TiO2–HfO2–ZrO2–Nd2O3 glasses

  • Daniel CaurantEmail author
  • Isabelle Bardez
  • Pascal Loiseau


Glass-ceramics containing (Hf,Zr)-zirconolite crystals (nominally CaHf1−xZrxTi2O7 with 0 ≤ x ≤ 1) were envisaged to immobilize minor actinides and plutonium. Such materials were prepared in this study by controlled crystallization of glasses belonging to the SiO2–Al2O3–CaO–Na2O–TiO2–HfO2–ZrO2–Nd2O3 system. Neodymium was used as trivalent actinides surrogate. The effect of total or partial substitution of ZrO2 by HfO2 (neutron poison for fission reactions) on glass crystallization in the bulk and near the surface is presented. It appeared that Hf/Zr substitution had not significant effect on nature, structure, and composition of crystals formed both on glass surface (titanite + anorthite) and in the bulk (zirconolite). This result can be explained by the close properties of Zr4+ and Hf4+ ions and by their similar structural role in glass structure. However, strong differences were observed between the nucleation rate IZ of zirconolite crystals in glasses containing only HfO2 and in glasses containing only ZrO2. Hf-zirconolite (CaHfTi2O7) crystals were shown to nucleate only very slowly in comparison with Zr-zirconolite (CaZrTi2O7) crystals. Composition changes - by increasing either HfO2 or Al2O3 concentration or by introducing ZrO2 in parent glass - were performed to increase IZ in hafnium-rich glasses. The proportion of Nd3+ ions incorporated in the zirconolite phase was estimated using ESR.


Electron Spin Resonance Electron Spin Resonance Spectrum Nucleation Rate Hafnium HfO2 



The CEA (Commissariat à l’Energie Atomique) and the French Group Nomade are gratefully acknowledged for their financial supports to this study. The authors would also like to thank C. Fillet (CEA Marcoule, France) for fruitful discussions.


  1. 1.
    Donald IW, Metcalfe BL, Taylor RN (1997) J Mater Sci 32:5851, DOI: 10.1023/A:1018646507438CrossRefGoogle Scholar
  2. 2.
    Lee WE, Ojovan MI, Stennet MC, Hyatt NC (2006) Adv Appl Ceram 105:3CrossRefGoogle Scholar
  3. 3.
    Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier, Oxford, UKGoogle Scholar
  4. 4.
    Caurant D, Loiseau P, Aubin-Chevaldonnet V, Gourier D, Majérus O, Bardez I (in press) In: Keister JE (ed) Nuclear materials research developments. Nova Science Publishers, Hauppauge, NY, USAGoogle Scholar
  5. 5.
    Guillaumont R (2004) C R Chimie 7:1129CrossRefGoogle Scholar
  6. 6.
    Strachan DM, Scheele RD, Buck EC, Icenhower JP, Kozelisky AE, Sell RL, Elovich RJ, Buchmiller WC (2005) J Nucl Mater 345:109CrossRefGoogle Scholar
  7. 7.
    Anderson EV, Burakov BE (2004) Mater Res Soc Symp Proc 807:207CrossRefGoogle Scholar
  8. 8.
    Madic C, Lecomte M, Baron P, Boullis B (2002) C R Physique 3:797CrossRefGoogle Scholar
  9. 9.
    Guy C, Audubert F, Lartigue JE, Latrille C, Advocat T, Fillet C (2002) C R Physique 3:827CrossRefGoogle Scholar
  10. 10.
    Fillet C, Advocat T, Bart F, Leturcq G, Rabiller H (2004) C R Chimie 7:1165CrossRefGoogle Scholar
  11. 11.
    Yudintsev SV (2003) Geol Ore Deposit 45:151Google Scholar
  12. 12.
    Laverov NP, Yudinstev SV, Yudintseva TS, Stefanovsky SV, Ewing RC, Lian J, Utsunomiya S, Wang LM (2003) Geol Ore Deposit 45:423Google Scholar
  13. 13.
    Dacheux N, Clavier N, Robisson AC, Terra O, Audubert F, Lartigue JE, Guy C (2004) C R Chimie 7:1141CrossRefGoogle Scholar
  14. 14.
    Ochkin AV, Stefanosky SV, Ptashkin AG, Mikhailenko NS, Kirjanova OI (2004) Mater Res Soc Symp Proc 824:267CrossRefGoogle Scholar
  15. 15.
    Ringwood AE, Kesson SE, Ware NG, Hibberson WO, Major A (1979) Geochem J 13:141CrossRefGoogle Scholar
  16. 16.
    Smith KL, Zhang Z, McGlinn P, Attard D, Li H, Lumpkin GR, Colella M, McLeod T, Aly Z, Loi E, Leung S, Hart KP, Ridgway M, Weber WJ, Thevuthasan S (2003) Mater Res Soc Symp Proc 757:289Google Scholar
  17. 17.
    McGlinn PJ, Advocat T, Leturcq G, McLeod TI, Aly Z, Yee P (2006) Mater Res Soc Symp Proc 932:575CrossRefGoogle Scholar
  18. 18.
    Leturcq G, McGlinn PJ, Barbe C, Blackford MG, Finnie KS (2005) Appl Geochem 20:899CrossRefGoogle Scholar
  19. 19.
    Roberts SK, Bourcier WL, Shaw HF (2000) Radiochim Acta 88:539CrossRefGoogle Scholar
  20. 20.
    Jorion F, Deschanels X, Advocat T, Desmouliere F, Cachia JN, Peuget S, Roudil D, Leturcq G (2006) Nucl Sci Eng 153:262CrossRefGoogle Scholar
  21. 21.
    Fielding PE, White TJ (1987) J Mater Res 2:387CrossRefGoogle Scholar
  22. 22.
    Xu H, Wang Y (2000) J Nucl Mater 279:100CrossRefGoogle Scholar
  23. 23.
    Hayward PJ (1988) In: Lutze W, Ewing RC (eds) Radioactive waste forms for the future. North Holland, Amsterdam, The Netherlands, p 427Google Scholar
  24. 24.
    Hayward PJ (1988) Glass Technol 29:122Google Scholar
  25. 25.
    Caurant D, Majérus O, Loiseau P, Bardez I, Baffier N, Dussossoy JL (2006) J Nucl Mater 354:143CrossRefGoogle Scholar
  26. 26.
    Loiseau P, Caurant D, Majérus O, Baffier N, Mazerolles L, Fillet C (2002) Phys Chem Glasses 43C:195Google Scholar
  27. 27.
    Loiseau P, Caurant D, Majérus O, Baffier N, Fillet C (2003) J Mater Sci 38:843, DOI: 10.1023/A:1021873301498CrossRefGoogle Scholar
  28. 28.
    Loiseau P, Caurant D, Baffier N, Fillet C (2001) Mater Res Soc Symp Proc 663:169CrossRefGoogle Scholar
  29. 29.
    Loiseau P, Caurant D, Bardez I, Majérus O, Baffier N, Fillet C (2003) Mater Res Soc Symp Proc 757:281Google Scholar
  30. 30.
    Loiseau P, Caurant D, Baffier N, Mazerolles L, Fillet C (2004) J Nucl Mater 335:14 CrossRefGoogle Scholar
  31. 31.
    Advocat T, Marcillat T, Deschanels X, Leturcq G, Jorion F, Rabiller H, Loiseau P, Veiller L (2002) In: Rabbe C, Vernaz E (eds) CEA Atalante: Rapport Scientifique 2002, Direction de l’énergie nucléaire (CEA-R-6800 ISSN 0429–3460), p 144Google Scholar
  32. 32.
    Shannon RD (1976) Acta Cryst A32:751CrossRefGoogle Scholar
  33. 33.
    McCauley RA, Hummel FA (1980) J Solid State Chem 33:99CrossRefGoogle Scholar
  34. 34.
    Swenson D, Nieh TG, Fournelle JH (1996) Mater Res Soc Symp Proc 412:337CrossRefGoogle Scholar
  35. 35.
    Vance ER, Jostsons A, Day R, Ball CJ, Begg BD, Angel PJ (1996) Mater Res Soc Symp Proc 412:41CrossRefGoogle Scholar
  36. 36.
    Putnam RL, Navrotsky A, Woodfield BF, Shapiro JL, Stevens R, Boerio-Goates J (1999) Mater Res Soc Symp Proc 556:11CrossRefGoogle Scholar
  37. 37.
    Loiseau P (2001) PhD Thesis, Université Paris VI, FranceGoogle Scholar
  38. 38.
    Caurant D, Bardez I, Loiseau P (in preparation)Google Scholar
  39. 39.
    Hart KP, Vance ER, Stewart MW, Weir J, Carter ML, Hambley M, Brownscombe A, Day RA, Leung S, Ball CJ, Ebbinghaus B, Gray L, Kan T (1998) Mater Res Soc Symp Proc 506:161CrossRefGoogle Scholar
  40. 40.
    Giéré R, Malmström J, Reusser E, Lumpkin GR, Düggelin M, Mathys D, Guggenheim R, Günther D (2001) Mater Res Soc Symp Proc 663:267CrossRefGoogle Scholar
  41. 41.
    Emsley J (1992) In: The elements. Clarendon Press (Oxford), p 82 and p 220Google Scholar
  42. 42.
    Feng X, Li H, Li L, Darab JG, Schweiger MJ, Vienna JD, Bunker BC, Allen PG, Bucher JJ, Craig IM, Edelstein NM, Shuh DK, Ewing RC, Wang LM, Vance ER (1999) Ceram Trans 93:409Google Scholar
  43. 43.
    Helean KB, Navrotsky A, Vance ER, Carter ML, Ebbinghaus B, Krikorian O, Lian J, Wang LM, Catalano JG (2002) J Nucl Mater 303:226CrossRefGoogle Scholar
  44. 44.
    Lumpkin GR, Whittle KR, Rios S, Smith KL, Zaluzec NJ (2004) J Phys Condens Matter 16:8557CrossRefGoogle Scholar
  45. 45.
    Loiseau P, Caurant D, Baffier N, Mazerolles L, Fillet C (2001) Mater Res Soc Symp Proc 663:179 CrossRefGoogle Scholar
  46. 46.
    Osborn EF, Muan A (1964) Phase diagrams for ceramists. The American Ceramic Society, Columbus, OH, USA, p 219Google Scholar
  47. 47.
    Barton J, Guillemet C (2005) In: Le Verre: science et technologie. EDP Sciences, Les Ullis, France, p 180Google Scholar
  48. 48.
    McMillan PW (1979) In: Glass-ceramics. Academic Press, London, UK, p 61Google Scholar
  49. 49.
    Strnad Z (1986) In: Glass-ceramic materials, glass science and technology, vol 8. Elsevier, Amsterdam, The Netherlands, p 72Google Scholar
  50. 50.
    Bihuniak PP, Condrate RA (1981) J Non-Cryst Solids 44:331CrossRefGoogle Scholar
  51. 51.
    Galoisy L, Pélegrin E, Arrio MA, Ildefonse P, Calas G (1999) J Am Ceram Soc 82:2219CrossRefGoogle Scholar
  52. 52.
    Caulder DL, Booth CH, Bucher JJ, Edelstein NM, Liu P, Lukens WW, Rao L, Shuh DK, Davis LL, Darab JG, Li H, Li L, Strachan DM (2000) In: 219th American Chemical Society National Meeting. Division of Nuclear Chemistry and Technology, Symposium on Nuclear Waste Remediation and Long Term Storage, San Francisco, USA, 26–30 March 2000 (poster session)Google Scholar
  53. 53.
    Strachan DM, Shuh DK, Ewing RC, Vance ER (2001) Distribution and solubility of radionuclides and neutrons absorbers in waste forms for disposition of plutonium ash and scraps, excess plutonium and miscellaneous spent nuclear fuels, Final Report (US DOE), Project Number 60387Google Scholar
  54. 54.
    Vance ER, Ball CJ, Blackford MG, Cassidy DJ, Smith KL (1990) J Nucl Mater 175:58CrossRefGoogle Scholar
  55. 55.
    Loiseau P, Caurant D, Majérus O, Baffier N, Fillet C (2003) J Mater Sci 38:853, DOI: 10.1023/A:1021825418336CrossRefGoogle Scholar
  56. 56.
    Loiseau P, Caurant D, Baffier N, Fillet C (2002) Phys Chem Glasses 43C:201Google Scholar
  57. 57.
    Ellison AJ, Hess PC (1986) Contrib Mineral Petrol 94:343CrossRefGoogle Scholar
  58. 58.
    Varshneya AK (1994) In: Fundamentals of inorganic glasses. Academic Press Inc., NY, USA, p 323CrossRefGoogle Scholar
  59. 59.
    Kirkpatrick RJ, Klein L, Uhlmann DR, Hays JH (1979) J Geophys Res 84:3671CrossRefGoogle Scholar
  60. 60.
    Caurant D, Bardez I, Loiseau P, Gervais C, J Mater Sci (in press)Google Scholar
  61. 61.
    Hayward PJ, Vance ER, Cann CD, Mitchell SL (1984) In: Wicks G, Ross WA (eds), Advances in ceramics, vol 8. The American Ceramic Society, Columbus, OH, p 291Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daniel Caurant
    • 1
    Email author
  • Isabelle Bardez
    • 1
    • 2
  • Pascal Loiseau
    • 1
  1. 1.Laboratoire de Chimie de la Matière Condensée de Paris, UMR-CNRS 7574, Ecole Nationale Supérieure de Chimie de Paris (ENSCP, ParisTech)ParisFrance
  2. 2.Commissariat à l’Energie Atomique ValrhoMarcoule, Bagnols-sur-CezeFrance

Personalised recommendations