Journal of Materials Science

, Volume 42, Issue 22, pp 9447–9452 | Cite as

Covalent attachment of poly (acrylic acid) onto multiwalled carbon nanotubes functionalized with formaldehyde via electrophilic substitution reaction

  • Zhi Yang
  • Xiao-Hua ChenEmail author
  • Shang-Zhou Xia
  • Yu-Xing Pu
  • Hai-Yang Xu
  • Wen-Hua Li
  • Long-Shan Xu
  • Bin Yi
  • Wei-Ying Pan


The functionalization with formaldehyde via an electrophilic substitution reaction and graft with poly (acrylic acid) (PAA) by “grafting from” technology have been carried out for multiwalled carbon nanotubes (MWNTs) and MWNTs-PAA composites have been formed. The IR and TEM results show presence of covalent band and so-called “core-shell” structures for MWNTs-PAA. The MWNTs-PAA exhibits excellent suspendability in water, which is significant to explore the potential application of carbon nanotube in biological and medical systems.


Acrylic Acid Atom Transfer Radical Polymerization Thermo Gravimetric Analysis Transmission Electron Microscope Result Electrophilic Substitution Reaction 



This subject is supported by both National Natural Science Foundation of China (Nos. 50372020, 59972031) and the Provincial Natural Science Foundation of Hunan, China (No. 01JJY2052).


  1. 1.
    Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95CrossRefGoogle Scholar
  2. 2.
    Jung YC, Sahoo NG, Cho JW (2006) Macr Rapid Comm 27:126CrossRefGoogle Scholar
  3. 3.
    Gao C (2006) Macr Rapid Comm 27:841CrossRefGoogle Scholar
  4. 4.
    Sun Y, Wilson RS, Schuster DI (2001) J Am Chem Soc 123:5348CrossRefGoogle Scholar
  5. 5.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  6. 6.
    Dagani R (1999) Chem Eng News 7:25CrossRefGoogle Scholar
  7. 7.
    Tomonari Y, Murakami H, Nakashima N (2006) Chem Eur J 12:4027CrossRefGoogle Scholar
  8. 8.
    Chen CS, Chen XH, Xu LS, Yang Z, Li WH (2005) Carbon 43:1660CrossRefGoogle Scholar
  9. 9.
    Xia HS, Wang Q, Qiu GG (2003) Chem Mater 15:3879CrossRefGoogle Scholar
  10. 10.
    Baskaran D, Dunlap JR, Mays JW, Bratcher MS (2005) Macr Rapid Comm 26:481CrossRefGoogle Scholar
  11. 11.
    Peng M, Li DS, Chen Y, Zheng Q (2006) Macr Rapid Comm 27:859CrossRefGoogle Scholar
  12. 12.
    Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Carbon 39:1251CrossRefGoogle Scholar
  13. 13.
    Ko FH, Lee CY, Ko CJ, Chu TC (2005) Carbon 3:727CrossRefGoogle Scholar
  14. 14.
    Yang Z, Chen XH, Liu YQ, Chen XH, Chen CS, Li WH, Xu LS (2006) Acta Chin Sinca 64:203Google Scholar
  15. 15.
    Kong H, Luo P, Gao C, Yan D (2006) Polymer 46:2472CrossRefGoogle Scholar
  16. 16.
    Kong H, Gao C, Yan D (2004) J Mater Chem 14:1401CrossRefGoogle Scholar
  17. 17.
    Chen SM, Wu GZ, Liu YD, Long DW (2006) Macromolecules 39:330CrossRefGoogle Scholar
  18. 18.
    Li Y, Zhang XB, Tao XY, Xu JM, Huang WZ, Luo JH, Luo ZQ, Li T, Liu F, Bao Y, Geise HJ (2005) Carbon 43:295CrossRefGoogle Scholar
  19. 19.
    Chen XH, Chen CS, Chen Q, Cheng FQ, Zhang G, Chen ZZ (2002) Mater Lett 57:734CrossRefGoogle Scholar
  20. 20.
    Li JX, Grennberg H (2006) Chem Eur J 12:3869CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhi Yang
    • 1
  • Xiao-Hua Chen
    • 1
  • Shang-Zhou Xia
    • 2
  • Yu-Xing Pu
    • 1
  • Hai-Yang Xu
    • 1
  • Wen-Hua Li
    • 1
  • Long-Shan Xu
    • 1
  • Bin Yi
    • 1
  • Wei-Ying Pan
    • 1
  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaP.R. China
  2. 2.China Aviation Powerplant Research InstituteZhuzhouChina

Personalised recommendations