Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10245–10249 | Cite as

Sonochemical preparation of nickel alumina nanotubes templated by anionic surfactant assemblies

  • Guoan Tai
  • Wanlin GuoEmail author
Article

Abstract

Nickel alumina nanotubes templated by dodecylsulfate assemblies have been successfully synthesized for the first time using a sonochemical process. These nanotubes were characterized by scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD). The formation mechanism of these nanotubes is also discussed. They were also calcined to study the change of the nanostructure morphology with the temperature. It was found that the nanotubes transformed from short nanotubes into dendritic structures of aggregations of nanoparticles into monodisperse nanoparticles, and these nanostructures hold high specific surface area.

Keywords

Sodium Dodecyl Sulfate MoS2 Gallium Oxide Nickel Alumina Nitrate Nonahydrate 

Notes

Acknowledgement

The work is financially supported by the 973 program (2007CB936204), the Ministry of Education of China (No. 705021, IRT0534), National NSF and Jiangsu Province NSF of China and the doctor Innovation Funds of NUAA (No. BCXJ06-04). We thank Professor J.M. Cao and J.H. Qiu for providing the facilities of the institute for the experimental work. Specially we thank Dr. K. Shen for TEM analysis, and also thank Dr. J.S. Liu, Ms. P.T. He, Ms. L. Wang, and Dr. M.B. Zheng for their technical assistance in nanomaterials’ characterization and discussions.

References

  1. 1.
    Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Prog Solid State Chem 31:5CrossRefGoogle Scholar
  2. 2.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Nature 404:59CrossRefGoogle Scholar
  3. 3.
    Remskar M (2004) Adv Mater 16:1497; Zhu HL, Ji X, Yang D (2006) J Mater Sci 41:3489Google Scholar
  4. 4.
    Wang Y, Herricks T, Xia Y (2003) Nano Lett 3:1163CrossRefGoogle Scholar
  5. 5.
    Gao PX, Ding Y, Wang ZL (2003) Nano Lett 3:1315CrossRefGoogle Scholar
  6. 6.
    Guo L, Ji YL, Xu HB, Simon P, Wu ZY (2002) J Am Chem Soc 124:14864; Altoe MVP, Sprunck JP, Gabriel JCP, Bradley K (2003) J Mater Sci 38:4805CrossRefGoogle Scholar
  7. 7.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  8. 8.
    Tenne R, Mrgulis L, Genut M, Hodes G (1992) Nature 360:444CrossRefGoogle Scholar
  9. 9.
    Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222CrossRefGoogle Scholar
  10. 10.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966CrossRefGoogle Scholar
  11. 11.
    Spahr ME, Bitterli P, Nesper R, Müller M, Krumeich F, Nissen HU (1998) Angew Chem, Int Ed 37:1263CrossRefGoogle Scholar
  12. 12.
    Hacohen YR, Grunbaum E, Tenne R, Sloan J, Hutchison JL (1998) Nature 395:337CrossRefGoogle Scholar
  13. 13.
    Molina R, Poncelet G (1998) J Catal 173:257CrossRefGoogle Scholar
  14. 14.
    Shao TM, Lin XC, Zhou M (2001) Sci China, Ser A 44:489CrossRefGoogle Scholar
  15. 15.
    Nagarajan N, Nicholson PS (2004) J Am Ceram Soc 87:2053CrossRefGoogle Scholar
  16. 16.
    Tao SW, Zhan ZL, Meng GY (1999) J Mater Sci Lett 18:707CrossRefGoogle Scholar
  17. 17.
    Bostrom TK, Wackelgard E, Westin G (2004) Sol Energy Mater Sol Cells 84:183CrossRefGoogle Scholar
  18. 18.
    Makhloufa SA, Khalil KMS (2003) Solid State Ionics 164:97CrossRefGoogle Scholar
  19. 19.
    Kraus GT, Lu YC, Trancik JE, Mitro DM, Giannelis EP, Thompson MO, Sass SL (1997) J Appl Phys 82:1189CrossRefGoogle Scholar
  20. 20.
    Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J (2005) Catal Lett 104:181CrossRefGoogle Scholar
  21. 21.
    Azurdia JA, Marchal J, Shea P, Sun HP, Pan XQ, Laine RM (2006) Chem Mater 18:731CrossRefGoogle Scholar
  22. 22.
    (a) Qiu XF, Zhu JJ, Pu L, Shi Y, Zheng YD, Chen HY (2004) Inorg Chem Commun 7:319; (b) Kristl M, Drofenik M (2003) Inorg Chem Commun 6:68. (c) Dhas NA, Suslick KS (2005) J Am Chem Soc 127:2368; (d) Zhu JJ, Xu S, Wang H, Zhu JM, Chen HY (2003) Adv Mater 15:156Google Scholar
  23. 23.
    (a) Mastai Y, Polsky R, Koltypin Y, Gedanken A, Hodes G (1999) J Am Chem Soc 121:10047; (b) Mdleleni MM, Hyeon T, Suslick KS (1998) J Am Chem Soc 120:6189; (c) Wang GZ, Chen W, Liang CH, Wang YW, Meng GW and Zhang LD (2001) Inorg Chem Commun 4:208Google Scholar
  24. 24.
    Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Nature 353:414CrossRefGoogle Scholar
  25. 25.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  26. 26.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  27. 27.
    Yada M, Mihara M, Mouri S (2002) Adv Mater 14:309CrossRefGoogle Scholar
  28. 28.
    Yada M, Ichinose A, Machida M, Kijima T (1999) Angew Chem Int Ed 38:3506CrossRefGoogle Scholar
  29. 29.
    Yada M, Kitamura H, Machida M, Kijima T (1998) Inorg Chem 37:6470CrossRefGoogle Scholar
  30. 30.
    Yada M, Sakai S, Torikai T, Watari T, Furuta S, Katsuki H (2004) Adv Mater 16:1222CrossRefGoogle Scholar
  31. 31.
    Sicard L, Llewellyn PL, Patarin J, Kolenda F (2001) Microporous Mesoporous Mater 44–45:195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of NanoscienceNanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations