Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9460–9464 | Cite as

Preparation and characterization of Al/AlN composites sintered under high pressure

  • J. G. Lee
  • H. A. Ma
  • X. L. Lee
  • Y. J. Zheng
  • G. H. Zuo
  • X. JiaEmail author
Article

Abstract

High-density aluminium/aluminium nitride (Al/AlN) composites were obtained by high pressure sintering method under 3.0–5.5 GPa and 860–1,690 °C for only 20–70 min. The results show that the relative density of Al/AlN composite containing 40 wt.% Al can reach 99.37% under 5.0 GPa and 1,600 °C for only 20 min. This sintering time is quite shorter than conventional methods (1–6 h). The fracture surfaces show homogeneous microstructure and transcrystalline fractures are easy to find.

Keywords

Relative Density Sinter Time Particle Rearrangement Short Sinter Time High Pressure Sinter 

Notes

Acknowledgement

This work is supported by the National Nature Science Foundation of China: 50572032.

References

  1. 1.
    Zhao M, Wu G, Zhu D, Jiang L, Dou Z (2004) Mater Lett 58:1899CrossRefGoogle Scholar
  2. 2.
    Sauques L, Fagnent S, Catherine M-CS, Sella C (1998) Surf Coat Technol 102:25CrossRefGoogle Scholar
  3. 3.
    Tangen I-L, Yu Y, Grande T, Hoier R, Einarsrud M-A (2004) J Eur Ceram Soc 24:2169CrossRefGoogle Scholar
  4. 4.
    Nakano H, Watari K, Urabe K (2003) J Eur Ceram Soc 23:1761CrossRefGoogle Scholar
  5. 5.
    Khan AA, Labbe JC (1996) J Eur Ceram Soc 16:739CrossRefGoogle Scholar
  6. 6.
    Couturier R, Ducret D, Merle P, Disson JP, Joubert P (1997) J Eur Ceram Soc 17:1861CrossRefGoogle Scholar
  7. 7.
    Creber DK, Poste SD, Aghajanian MK, Claar TD (1998) Ceram Sci Proc 7–8:975Google Scholar
  8. 8.
    Toy C, Scott WD (1990) J Am Ceram Soc 73:97CrossRefGoogle Scholar
  9. 9.
    Inoue A, Nosaki K, Kim BG, Masumoto T, Masumoto T (1993) J Mater Sci 28:4398CrossRefGoogle Scholar
  10. 10.
    Lai SW, Chung DDL (1994) J Mater Sci 298:3128CrossRefGoogle Scholar
  11. 11.
    Khan AA, Labbe JC (1997) Mater Sci Eng A 230:33CrossRefGoogle Scholar
  12. 12.
    Saiyu W, Weihao X, Mingshuang Y, Chou F (2006) Rare Metal 25:90CrossRefGoogle Scholar
  13. 13.
    Lefort P, Queriaud R (1994) J Eur Ceram Soc 13:329CrossRefGoogle Scholar
  14. 14.
    Chedru M, Vicens J, Chermant L, Mordike BL (1999) J Microsc 196(Pt 2):103CrossRefGoogle Scholar
  15. 15.
    Sbaizero O, Pezzotti G (2001) J Eur Ceram Soc 21:269CrossRefGoogle Scholar
  16. 16.
    Bezhenar NP, Bozhko SA, Belyavina NN, Markiv VYa (1997) Diam Relat Mater 6:927CrossRefGoogle Scholar
  17. 17.
    Ueno M, Onodera A (1992) Phys Rev B 45:10123CrossRefGoogle Scholar
  18. 18.
    Lii D-F, Huang J-l, Chang S-T (2002) J Eur Ceram Soc 22:253CrossRefGoogle Scholar
  19. 19.
    MacLeod HM (1983) In: Stanley-wood NG (ed) Compaction of ceramics in enlargement and compaction of particulate solids, Chap 11. Butterworths Monographs in Chemical Engineering. Butterworth & Co., London, p 253Google Scholar
  20. 20.
    Liu Y, Zhou H, Qiao L, Wu L (1999) J Mater Sci Lett 18:703CrossRefGoogle Scholar
  21. 21.
    Qiao L, Zhou H, Xue H, Wang S (2003) J Eur Ceram Soc 23:61CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Chen G, Wu G, Xiu Z, Luan B (2003) Mater Lett 57:1453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. G. Lee
    • 1
  • H. A. Ma
    • 2
  • X. L. Lee
    • 1
    • 2
  • Y. J. Zheng
    • 2
    • 3
  • G. H. Zuo
    • 2
    • 3
  • X. Jia
    • 1
    • 2
    Email author
  1. 1.Institute of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.National Lab of Superhard MaterialsJilin UniversityChangchunChina
  3. 3.Mudanjiang Teacher’s CollegeMudanjiangChina

Personalised recommendations