Journal of Materials Science

, Volume 42, Issue 22, pp 9145–9153 | Cite as

From Ti–Al- to Ti–Al–N-sputtered 2D materials

  • Maria Teresa VieiraEmail author
  • Ana S. Ramos
  • José M. Castanho
  • João C. Oliveira
  • Albano Cavaleiro


This paper reviews thin films constituted by elements based on the Ti–Al–N system, bearing in mind the role of the condensed phases in the development of structural components and functional devices. In recent decades, the Ti–Al, Ti–N and Al–N nanocrystalline binary systems have rapidly attracted research and industry interest. These systems have revealed a great performance via atomic-level structural control, making it possible to tailor new atomic structures and morphologies suitable in different applications as protective and hard coatings and as thermal/diffusion barriers. The binary phases based on nitrogen were the first to exhibit a wealth of interesting mechanical and electrochemical behaviours. However, more recently the Ti-Al and, particularly, the Ti1 − xAlxN thin films have been applied with success in the industry. The purpose of this paper is to compile the master results concerning the production and characterisation of binary and ternary thin films of the Ti–Al–N system using similar deposition strategies. These materials form a good base to analyse the correlation between the chemical composition and the atomic structure, the preferred orientations and the morphology of 2D monolithic materials. The deposition strategies adopted and the thin films’ chemical compositions determine the as-deposited structures and, consequently, the mechanical behaviour of the thin films produced, particularly the hardness. In general, an intermediary amorphous stage is observed, i.e., the thin films exhibit a loss of crystallinity in the transition from a saturated solid solution to a new compound.


Thin Film Multilayer Thin Film Wear Resistant Coating Dual Target Composite Target 



This work was supported by Fundação para a Ciência e Tecnologia, BPD/6771/2001, and FEDER.


  1. 1.
    Kim HC, Theodore ND, Gadre KS, Mayer JW, Alford TL (2004) Thin Solid Films 460:17CrossRefGoogle Scholar
  2. 2.
    Wendler B, Danielewski M, Przybylski K, Rylski A, Kacmarek L, Jachowicz M (2006) J Mater Proc Technol 175:427CrossRefGoogle Scholar
  3. 3.
    Escudero ML, Muñoz-Morris MA, Garcia-Alonso MC, Fernández-Escalante E (2004) Intermetallics 12:253CrossRefGoogle Scholar
  4. 4.
    Kim Y-W (1994) JOM 46:30CrossRefGoogle Scholar
  5. 5.
    Vieira MT, Trindade B, Ramos AS, Fernandes JV, Vieira MF (2000) Surf Coat Technol 131:162CrossRefGoogle Scholar
  6. 6.
    Vieira MT, Trindade B, Ramos AS, Fernandes JV, Vieira MF (2002) Mater Sci Eng A 329:146Google Scholar
  7. 7.
    Vieira MT, Roque S, Ramos AS (2000) Adhes Aspects Thin Films 1:171Google Scholar
  8. 8.
    Lii D-F, Huang J-L, Lin M-H (1998) Surf Coat Technol 99:197CrossRefGoogle Scholar
  9. 9.
    Ramos AS, Vieira MT, Duarte LI, Vieira MF, Viana F, Calinas R (2006) Intermetallics 14:1157CrossRefGoogle Scholar
  10. 10.
    Sundgren J-E, Hentzell TG (1986) J Vac Sci Technol A 4:2259CrossRefGoogle Scholar
  11. 11.
    Oliveira JC, Cavaleiro A, Vieira MT (1999) In: Proceedings of the 13th conference on surface modification technologies, 1999Google Scholar
  12. 12.
    Münz W-D (1986) J Vac Sci Technol A 4:2717CrossRefGoogle Scholar
  13. 13.
    Khrais SK, Lin YJ (2007) Wear 262:64CrossRefGoogle Scholar
  14. 14.
    Huang J-L, Shew BY (1999) J Am Ceram Soc 82:696CrossRefGoogle Scholar
  15. 15.
    Oliveira JC, Manaia A, Dias JP, Cavaleiro A, Teer D, Taylor S (2006) Surf Coat Technol 200:6583CrossRefGoogle Scholar
  16. 16.
    Kim GS, Lee SY, Hahn JH (2005) Surf Coat Technol 193:213CrossRefGoogle Scholar
  17. 17.
    Singh K, Limaye PK, Soni NL, Grover AK, Agrawal RG, Suri AK (2005) Wear 258:1813CrossRefGoogle Scholar
  18. 18.
    Yan Q, Yoshioka H, Habazaki H, Kawashima A, Asami K, Hashimoto K (1990) J Non-Cryst Solids 125:25CrossRefGoogle Scholar
  19. 19.
    Silvain JF, Barbier JE, Lepetitcorps Y, Alnot M, Ehrhardt JJ (1993) Surf Coat Technol 61:245CrossRefGoogle Scholar
  20. 20.
    Sanchette F, Billard A, Frantz C (1998) Surf Coat Technol 98:1162CrossRefGoogle Scholar
  21. 21.
    Gachon J-C, Rogachev AS, Grigoryan HE, Illarionova EV, Kuntz J-J, Kovalev DYu, Nosyrev AN, Sachkova NV, Tsygankov PA (2005) Acta Mater 53:1225CrossRefGoogle Scholar
  22. 22.
    Banerjee R, Swaminathan S, Wheeler R, Fraser HL (2000) Phil Magazine A 80:1715CrossRefGoogle Scholar
  23. 23.
    Padmaprabu C, Kuppusami P, Singh A, Mohandas E, Raghunthan VS (2001) Scripta Mater 44:1837CrossRefGoogle Scholar
  24. 24.
    Rickerby DS, Burnett PJ (1998) Thin Solid Films 157:195CrossRefGoogle Scholar
  25. 25.
    Castanho JM, Vieira MT (1998) Surf Coat Technol 102:50CrossRefGoogle Scholar
  26. 26.
    Hultman L (2000) Vacuum 57:1CrossRefGoogle Scholar
  27. 27.
    Pierson JF, Wiederkehr D, Billard A (2005) Thin Solid Films 478:196CrossRefGoogle Scholar
  28. 28.
    Tominaga K, Imai H, Shirai M (1991) Jpn J Appl Phys 30:2574CrossRefGoogle Scholar
  29. 29.
    Barshilia HC, Prakash MS, Jain A, Rajam KS (2005) Vacuum 77:169CrossRefGoogle Scholar
  30. 30.
    Sanchette F, Loi TH, Billard A, Frantz C (1995) Surf Coat Technol 74–75:903CrossRefGoogle Scholar
  31. 31.
    Witthaut M, Cremer R, Von Richthofen A, Neuschütz D (1998) Fresenius J Anal Chem 361:639CrossRefGoogle Scholar
  32. 32.
    Jehn HA, Hofmann S, Münz W-D (1987) Thin Solid Films 153:45CrossRefGoogle Scholar
  33. 33.
    Håkansson G, Sundgren J-E, McIntyre D, Greene JE, Münz W-D (1987) Thin Solid Films 153:55CrossRefGoogle Scholar
  34. 34.
    Andersen KN, Bienk EJ, Schweitz KO, Reitz H, Chevallier J, Kringhøj P, Bøttiger J (2000) Surf Coat Technol 123:219CrossRefGoogle Scholar
  35. 35.
    Prengel HG, Santhanam AT, Penich RM, Jindal PC, Wendt KH (1997) Surf Coat Technol 94–95:597CrossRefGoogle Scholar
  36. 36.
    Huang CT, Duh J-G (1996) Surf Coat Technol 81:164CrossRefGoogle Scholar
  37. 37.
    Vaz F, Rebouta L, Andritschky M, Silva MF, Soares JC (1997) J European Ceram Soc 17:1971CrossRefGoogle Scholar
  38. 38.
    Panjan P, Navinšek D, Čekada M, Zalar A (1999) Vacuum 53:127CrossRefGoogle Scholar
  39. 39.
    Jarms C, Stock H-R, Mayr P (1998) Surf Coat Technol 108:206CrossRefGoogle Scholar
  40. 40.
    Musil J, Hrubý H (2000) Thin Solid Films 365:104CrossRefGoogle Scholar
  41. 41.
    Suzuki T, Huang D, Ikuhara Y (1998) Surf Coat Technol 107:41CrossRefGoogle Scholar
  42. 42.
    Wu SK, Lin HC, Liu PL (2000) Surf Coat Technol 124:97CrossRefGoogle Scholar
  43. 43.
    Zhou M, Makino Y, Nose M, Nogi K (1999) Thin Solid Films 339:203CrossRefGoogle Scholar
  44. 44.
    Wahlström U, Hultman L, Sundgren J-E, Adibi F, Petrov I, Greene JE (1993) Thin Solid Films 235:62CrossRefGoogle Scholar
  45. 45.
    Karimi A, Vasco Th, Santana A (2005) In: Basu SN, Krzanowski JE, Patscheider J, Gogotsi Y (eds) Surface engineering 2004—fundamentals and applications, Mater Res Soc Symp Proc 843, Warrendale, PA, T3.38Google Scholar
  46. 46.
    Knotek O, Münz W-D, Leyendecker TJ (1987) J Vac Sci Technol A 5:2173CrossRefGoogle Scholar
  47. 47.
    Shew B-Y, Huang J-L, Lii D-F (1997) Thin Solid Films 293:212CrossRefGoogle Scholar
  48. 48.
    Suryanarayana C, Norton MG (1998) X-ray diffraction: a pratical approach. Plenum PressGoogle Scholar
  49. 49.
    Cunha L, Andritschky M, Rebouta L, Silva R (1998) Thin Solid Films 317:351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Teresa Vieira
    • 1
    Email author
  • Ana S. Ramos
    • 1
  • José M. Castanho
    • 1
  • João C. Oliveira
    • 1
  • Albano Cavaleiro
    • 1
  1. 1.ICEMS, Departamento de Engenharia Mecânica, Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations