Journal of Materials Science

, Volume 42, Issue 22, pp 9324–9330 | Cite as

Dielectric and thermal characteristics of gel grown single crystals of ytterbium tartrate trihydrate

  • Basharat Want
  • Farooq Ahmad
  • P. N. KotruEmail author


Dielectric and thermal characteristics of gel grown single crystals of ytterbium tartrate trihydrate have been carried out. The dielectric constant has been measured as a function of frequency in the range 2 kHz–1 MHz and temperature range 30–300 °C. The dielectric constant increases with temperature, attains a peak near 215 °C, and then decreases as the temperature exceeds 215 °C. The dielectric anomaly at 215 °C is suggested to be due to phase transition brought about in the material. The dielectric behaviour of the material is correlated with the results on thermal analysis. Thermogravimetric and differential thermal analysis have been used to study the thermal characteristics of the material. The experimental results show that the material is thermally stable up to 200 °C. The decomposition process occurs in two stages until ytterbium oxide is formed at 700 °C. The non-isothermal kinetic parameters e.g., activation energy and the frequency factor have been evaluated for each stage of thermal decomposition by using the integral method, applying the Coats–Redfern approximation.


Tartrate Tartaric Acid Ytterbium Differential Thermal Analysis Curve Observe Weight Loss 



One of the authors (B. Want) is thankful to the UGC, New Delhi and Department of Higher Education, Government of J & K for extending the tenure of the teacher fellowship. The corresponding author (PNK) is thankful to the All India Council of Technical Education, New Delhi for award of Emeritus fellowship. The authors are grateful to Professor T. K. Razdan of the Department of Chemistry, University of Kashmir, presently at the Department of Chemistry, University of Jammu, for his valuable suggestions.


  1. 1.
    Torres ME, Lo’pez T, Peraza J, Stockel J, Yanes AC, Gonza´ Lez-Silgo C, Ruiz-Perez C, Lorenzo-Luis PA (1998) J Appl Phys 84:5729CrossRefGoogle Scholar
  2. 2.
    Rahimkutty MH, Rajendra Babu K, Shreedharan Pillai K, Sudarshana Kumar MR, Nair CMK (2001) Bull MaterSci 24:249Google Scholar
  3. 3.
    Torres ME, Yanes AC, Lo’pez T, Stockel J, Peraza JF (1995) J Cryst Growth 156:421CrossRefGoogle Scholar
  4. 4.
    Torres ME, Lo’pez T, Stockel J, Solans X, Garcia-Valle´s M, Rodriguez-Castello´n E, Gonza´ Lez-Silgo C (2002) J Solid State Chem 163:491CrossRefGoogle Scholar
  5. 5.
    Fousek J, Cross LE, Seely K (1970) Ferroelectrics 1:63CrossRefGoogle Scholar
  6. 6.
    Ivanov NR (1984) Ferroelectric Letters 27:45CrossRefGoogle Scholar
  7. 7.
    Jona F, Shirane G (1993) In: Ferroelectric Crystals. Dover Publications, Inc., New York, Ch.VIIGoogle Scholar
  8. 8.
    Valasek J (1921) J Phys Rev 19:478CrossRefGoogle Scholar
  9. 9.
    Merz WJ (1949) Phys Rev 75:687CrossRefGoogle Scholar
  10. 10.
    Matthias B, Hulm JK (1951) Phys Rev 82:108CrossRefGoogle Scholar
  11. 11.
    Desai CC, Patel AH, Ramana MSV (1990) Ferroelectrics 23:102Google Scholar
  12. 12.
    Abdel-Kader MM, El-Kabbany F, Taha S (1991) J Mater Sci Mater Elect 1:201CrossRefGoogle Scholar
  13. 13.
    Abdel-Kader MM, Ei-Kabbany F, Taha S, Abosehly A, Tahoon KK, El-Sharkawy A, (1991) J Phys Chem Solids 52:655CrossRefGoogle Scholar
  14. 14.
    Gon HB (1990) J Cryst Growth 102:501CrossRefGoogle Scholar
  15. 15.
    Yanes AC, Lopez T, Stockel J, Peraza JF, Torres ME (1996) J Mater Sci 31:2683CrossRefGoogle Scholar
  16. 16.
    Lopez T, Stockel J, Peraza JF, Torres ME (1995) Cryst Res Technol 30:677CrossRefGoogle Scholar
  17. 17.
    Arora SK, Patel V, Patel RG, Amin B, Kothari A (2004) J Phys Chem Solids 65:965CrossRefGoogle Scholar
  18. 18.
    Arora SK, Patel V, Kothari A (2004) Mater Chem Phys 84:323CrossRefGoogle Scholar
  19. 19.
    Jain A, Bhat S, Pandita S, Kaul ML, Kotru PN (1997) Bull Mater Sci 20:1089CrossRefGoogle Scholar
  20. 20.
    Deb N (2004) J Therm Anal Cal 78:227CrossRefGoogle Scholar
  21. 21.
    Henisch HK (1973) In: Crystal Growth in Gels. Pennsylvania State University Press, University Park, PAGoogle Scholar
  22. 22.
    Henisch HK (1988) Crystals in gels and liesegang rings. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. 23.
    Want B, Ahmad F, Kotru PN (2006) Cryst Res Technol 41:1167CrossRefGoogle Scholar
  24. 24.
    Werner PE, Eriksson L, Westdahl M (1985) J Appl Crystallogr 18:367CrossRefGoogle Scholar
  25. 25.
    Hawthorne FC, Borys I, Ferguson RB (1983) Acta Cryst C39:540Google Scholar
  26. 26.
    Mathew JA, Michael GB, Morris DS, David AR (1996) Polyhedron 15:3377CrossRefGoogle Scholar
  27. 27.
    Chuan-De W, Xiao-Ping Z, Can-Zhong L, Hong-Hui Z, Jin-Shun H (2002) Acta Cryst E58:228Google Scholar
  28. 28.
    Schuster P (1976) In: The hydrogen bond—recent developments in theory and experiments. North-Holland Publ. Co., Amsterdam, p 1142Google Scholar
  29. 29.
    Mackenzie RC (1972) In: Differential thermal analysis. Academic Press London, vol 2, Ch. 44, p 500Google Scholar
  30. 30.
    Manna SC, Zangrando E, Ribas J, Chaudhuri NR (2006) Polyhedron 25:1779CrossRefGoogle Scholar
  31. 31.
    Nakamoto K (1997) In: Infra red and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, 5th edn, part B, Ch. III, p 70Google Scholar
  32. 32.
    Coats AW, Redfern JP (1964) Nature 201:68CrossRefGoogle Scholar
  33. 33.
    Straszko J, Olszak-Humienik M, Mozejko J (2000) J Therm Anal 39:935CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KashmirSrinagarIndia
  2. 2.Department of Physics and ElectronicsUniversity of JammuJammuIndia

Personalised recommendations