Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9221–9226 | Cite as

Synthesis and characterization of LiNi0.9Co0.1O2 for lithium batteries

  • Daocong Li
  • Zhenghe PengEmail author
  • Wenyong Guo
  • Chaoqun Yuan
  • Yangmei Liu
  • Yunhong Zhou
Article

Abstract

LiNi0.9Co0.1O2 cathode material is prepared from LiOH·H2O and Ni0.9Co0.1(OH)2 by co-precipitation and subsequent two-stage heat treatment in flowing oxygen based on the results of thermogravimetric. The structural and electrochemical properties of the samples are characterized by means of inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammogram (CV) and charge–discharge studies. All the samples sintered at different temperatures have a typical layered structure with space group R3-m and good electrochemical performances. The sintering temperature has a remarkable effect on the electrochemical performance of the samples. The sample sintered at 730 °C shows the largest initial discharge capacity 191.1 mAh g−1 (50 mA g−1, 3.0–4.3 V) and the best cycling performance. The initial discharge capacity rises to above 200 mAh g−1 with the voltage range 3.0–4.5 V.

Keywords

Sinter Temperature Discharge Capacity Cathode Material LiOH Good Electrochemical Performance 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the National Nature Science Foundation of China (No. 29833090 and No. 29771025).

References

  1. 1.
    Nagaura T, Taza K (1990) Prog Batt Sol Cells 9:20Google Scholar
  2. 2.
    Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Prog Mater Sci 50:881CrossRefGoogle Scholar
  3. 3.
    Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491CrossRefGoogle Scholar
  4. 4.
    Morales J, Perez C, Tirado JL (1990) Mater Res Bull 25:623CrossRefGoogle Scholar
  5. 5.
    Ohzuku T, Ueda A (1994) Solid State Ionics 69:201CrossRefGoogle Scholar
  6. 6.
    Arai H, Okada S, Ohtsuka H, Ichimura M (1995) Solid State Ionics, 80:261CrossRefGoogle Scholar
  7. 7.
    Dokko K, Nishizawa M, Horikoshi S, Itoh T, Mohamed M, Uchida I (2000) Electrochem Solid state Lett 3:125CrossRefGoogle Scholar
  8. 8.
    Broussely M, Biensan P, Simon B (1999) Electrochim Acta 45:3CrossRefGoogle Scholar
  9. 9.
    Julien C, Michael SS, Ziolkiewicz S (1999) Int J Inorg Mater 1:29CrossRefGoogle Scholar
  10. 10.
    Belharouak I, Tsukamoto H, Amine K (2003) J Power Sources 119–121:175CrossRefGoogle Scholar
  11. 11.
    Cho J, Park B (2001) J Power Sources 92:35CrossRefGoogle Scholar
  12. 12.
    Fey GTK, Shiu RF, Subramanian V, Chen JG, Chen CL (2002) J Power Sources 103:265CrossRefGoogle Scholar
  13. 13.
    Fey GTK, Chen JG, Wang ZF, Yang HZ, Kumar TP (2004) Mater Chem Phys 87:246CrossRefGoogle Scholar
  14. 14.
    Oh SH, Jeong WT, Cho WI, Cho BW, Woo K (2005) J Power Sources 140:145CrossRefGoogle Scholar
  15. 15.
    Wu S, Yang CW (2005) J Power Sources 146:270CrossRefGoogle Scholar
  16. 16.
    Fey GTK, Shiu RF, Kumar TP, Chen CL (2003) Mater Sci Eng B 100:234CrossRefGoogle Scholar
  17. 17.
    Hwang BJ, Santhannam R, Chen CH (2003) J Power Sources 114:244CrossRefGoogle Scholar
  18. 18.
    Song M, Kwon I, Kim H (2005) J Appl Electrochem 35:1073CrossRefGoogle Scholar
  19. 19.
    Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sources 76:141CrossRefGoogle Scholar
  20. 20.
    Li W, Currie JC (1997) J Electrochem Soc 144:2773CrossRefGoogle Scholar
  21. 21.
    Fey GTK, Wang ZF, Kumar TP (2002) Ionics 8:351CrossRefGoogle Scholar
  22. 22.
    Gao Y, Yakovieva MV, Ebner WB (1998) Electrochem Solid State Lett 1:117CrossRefGoogle Scholar
  23. 23.
    Kim J, Fulmer P, Manthiram A (1999) Mater Res Bull 34:571CrossRefGoogle Scholar
  24. 24.
    Gummow RJ, Thackeray MM, David WIF, Hull S (1992) Mater Res Bull 27:327CrossRefGoogle Scholar
  25. 25.
    Reimers JR, Rossen E, Jones CD, Dahn JR (1993) Solid State Ionics 61:335CrossRefGoogle Scholar
  26. 26.
    Dahn JR, Von Sacken U, Michal CA (1990) Solid State Ionics 44:87CrossRefGoogle Scholar
  27. 27.
    Gover RKB, Kanno R, Mitchell BJ, Yonemura M, Kawamoto Y (2000) J Electrochem Soc 147:4045CrossRefGoogle Scholar
  28. 28.
    Li W, Reimers JN, Dahn JR (1993) Solid State Ionics 67:123CrossRefGoogle Scholar
  29. 29.
    Cho J, Jung H, Park Y, Kim G, Lim H (2000) J Electrochem Soc 147:15CrossRefGoogle Scholar
  30. 30.
    Wang GX, Lindsay MJ, Ionescu M, Bradhurst DH, Dou SX, Liu HK (2001) J Power Sources 97–98:298CrossRefGoogle Scholar
  31. 31.
    Chebiam RV, Prado F, Manthiram A (2001) Chem Mater 13:2951CrossRefGoogle Scholar
  32. 32.
    Omanda H, Brousse T, Marhic C, Schleich DM (2004) J Electrochem Soc 151:A992CrossRefGoogle Scholar
  33. 33.
    Cho J, Kim TJ, Noh M, Park B (2004) J Electrochem Soc 151:A1889Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daocong Li
    • 1
  • Zhenghe Peng
    • 1
    Email author
  • Wenyong Guo
    • 1
  • Chaoqun Yuan
    • 1
  • Yangmei Liu
    • 1
  • Yunhong Zhou
    • 1
  1. 1.Department of ChemistryWuhan UniversityWuhanP.R. China

Personalised recommendations