Journal of Materials Science

, Volume 42, Issue 22, pp 9239–9244 | Cite as

Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation

  • Ping ChengEmail author
  • Changsheng Deng
  • Mingyuan Gu
  • Wenfeng Shangguan


Visible-light responsive zinc ferrite doped titania (ZFDT) photocatalysts were prepared by sol-gel method. Diffuse Reflectance Spectroscopy (DRS) result shows that the absorption edge of ZFDT has moved to the visible spectrum range and a very large redshift occurs in comparison with the undoped titania. X-ray diffraction (XRD) results show that zinc ferrite can prevent the transformation of titania from anatase to rutile when the content of zinc ferrite is above 1.5%; while the phase transformation is promoted when its content is below 1.5%. In the latter case, zinc ferrite was assumed to exist as separate zinc and ferric cations in the lattice of titania in the form of oxides, both of which promote the phase transformation as previously reported in other literatures. Field emission scanning electron micrography (FE-SEM) shows that the average particle size of 1.5%ZnFe2O4/TiO2 calcined at 500 °C is about 70 nm. The photocatalytic experimental results exhibit that ZFDT powders can effectively photodegrade methyl orange under visible light irradiation and the maxium photoactivity is achieved when the amount of zinc ferrite is 1.5%.


Ferrite Rutile Methyl Orange Visible Light Irradiation ZnFe2O4 


  1. 1.
    Zeltner WA, Fu X, Anderson MA (1995) Appl Catal B 6(3):209CrossRefGoogle Scholar
  2. 2.
    Jung KY, Park SB (2000) Appl Catal B 25(4):249CrossRefGoogle Scholar
  3. 3.
    Jean-Marie H, Chantal G, Jean D, Corinne L, Sixto M, Julian B (2002) Appl Catal B 35(4):281CrossRefGoogle Scholar
  4. 4.
    Goeringer S, Chenthamarakshan CR, Rajeshwar K (2001) Electrochem Commun 3:290CrossRefGoogle Scholar
  5. 5.
    Thaminimulla CTK, Takata T, Hara M, Kondo JN, Domen K (2000) J Catal 196:362CrossRefGoogle Scholar
  6. 6.
    Bessekhouad Y, Mohammedil M, Trari M (2002) Solar Energy Mater Solar Cells 73:339CrossRefGoogle Scholar
  7. 7.
    Asahi R, Morikawa T, Ohwaki T (2001) Science 293:269CrossRefGoogle Scholar
  8. 8.
    Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243CrossRefGoogle Scholar
  9. 9.
    Anpo, M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  10. 10.
    Anpo M, Takeuchi, M, Ikeue K, Doshi S (2002) Curr Opin Solid St Mater Sci 6(5):381CrossRefGoogle Scholar
  11. 11.
    Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B 42:403CrossRefGoogle Scholar
  12. 12.
    Xie Y, Yuan C (2003) Appl Catal B 46:251CrossRefGoogle Scholar
  13. 13.
    Valenzuela MA, Bosch P, Jiménez-Becerrill J, Quiroz O, Páez AI (2002) J Photochem Photobiol A 148:177CrossRefGoogle Scholar
  14. 14.
    Saraf LV, Patil SL, Ogale SB (1998) J Mod Phys 12:2635CrossRefGoogle Scholar
  15. 15.
    Ding X-Z, Liu X (1997) Mat Sci Eng A-Struct 224:210CrossRefGoogle Scholar
  16. 16.
    Shannon RD (1964) J Appl Phys 35:3414CrossRefGoogle Scholar
  17. 17.
    Ding XZ (1995) Ph. D, Thesis, Insititute of Solid Physics, Chinese Academy of Science, p 53Google Scholar
  18. 18.
    Yuan Z, Zhang L (1998) Nanostruct Mater 10:1127CrossRefGoogle Scholar
  19. 19.
    Rainho JP, Rocha J, Carlos LD (2001) J Mater Res 16:2369CrossRefGoogle Scholar
  20. 20.
    de GJ, Soler-Illia AA, Candel RJ, Regazzoni AE, Blesa MA (1997) Chem Mater 9:184Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ping Cheng
    • 1
    Email author
  • Changsheng Deng
    • 1
  • Mingyuan Gu
    • 2
  • Wenfeng Shangguan
    • 2
  1. 1.State Key Lab of New Ceramics and Fine Processing, Institute of Nuclure & New Energy TechnologyTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of MMCsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations