Journal of Materials Science

, Volume 42, Issue 22, pp 9216–9220 | Cite as

Microstructure and phase transformations in a Ni50Mn29Ga16Gd5 alloy with a high transformation temperature

  • Wei Cai
  • Li Gao
  • Z. Y. Gao


A Heusler Ni50Mn29Ga16Gd5 alloy with a high transformation temperature has been obtained by substituting 5 at% Gd for Ga in a ternary Ni50Mn29Ga21 ferromagnetic shape memory alloy. The microstructure and phase transformations in the Ni50Mn29Ga16Gd5 alloy have been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. It is shown that the microstructure of the Ni50Mn29Ga16Gd5 alloy consists of matrix and hexagonal Gd (Ni,Mn)4Ga phase, which indicates a eutectic structure composed of these two phases. One-step thermoelastic martensitic transformation occurs in this quaternary alloy. Ni50Mn29Ga16Gd5 alloy exhibits a martensite transformation start temperature up to 524 K, approximately 200 K higher than that of Ni50Mn29Ga21 alloy. At room temperature, non-modulated martensite with twin substructure is observed in Ni50Mn29Ga16Gd5 alloy.


Martensite Martensitic Transformation Thermal Hysteresis Transmission Electron Microscopy Bright Field Image Martensitic Transformation Temperature 



This work is supported by National Natural Science Foundation of China (No. 50531020).


  1. 1.
    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746CrossRefGoogle Scholar
  2. 2.
    Ullakko K, Huang JK, Kantner C, O’handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966CrossRefGoogle Scholar
  3. 3.
    Jiang CB, Liang T, Xiu HB, Zhang M, Wu GH (2002) Appl Phys Lett 81:2818CrossRefGoogle Scholar
  4. 4.
    Söderberg O, Ge Y, Sozinov A, Hannula SP, Lindroos VK (2005) Smart Mater Struct 14:S223CrossRefGoogle Scholar
  5. 5.
    Tsuchiya K, Tsutsumi A, Ohtsuka H, Umemoto M (2004) Mater Sci Eng A 378:370CrossRefGoogle Scholar
  6. 6.
    Zhao ZQ, Xiong W, Wu SX, Wang XL (2004) J Iron Steel Res 111:55Google Scholar
  7. 7.
    Guo SH, Zhang YH, Zhao ZQ, Li JL, Wang XL (2004) J Rare Earths 22:632Google Scholar
  8. 8.
    Gao L, Cai W, Liu AL, Zhao LC (2006) J Alloys Compd 425:314CrossRefGoogle Scholar
  9. 9.
    Joshi DA, Tomy CV, Rana DS, Nagarajan R, Malik SK (2006) Solid State Commun 137:225CrossRefGoogle Scholar
  10. 10.
    Albertini F, Pareti L, Paoluzia A, Morellon L, Algarabel PA, Ibarra MR, Righi L (2002) Appl Phys Lett 81:4032CrossRefGoogle Scholar
  11. 11.
    Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB (2004) Acta Mater 52:2779CrossRefGoogle Scholar
  12. 12.
    Wang WH, Chen JL, Liu ZH, Wu GH, Zhan WS (2001) Phys Rev B 65:012416CrossRefGoogle Scholar
  13. 13.
    Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Acta Mater 48:3027CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations