Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9284–9292 | Cite as

The microstructure and mechanical properties of Fe–Cu materials fabricated by pressure-less-shaping of nanocrystalline powders

  • Rosa Di MaggioEmail author
  • Gloria Ischia
  • Mauro Bortolotti
  • Federico Rossi
  • Alberto Molinari
Article

Abstract

The microstructure of Fe-40%wtCu nanocrystalline powders, prepared by mechanical alloying, was studied before and after the consolidation process. Pressure-less-shaping (PS) was used to consolidate the powders. The PS technique, similar to metal injection moulding (MIM), does not require external pressure in order to fill up the mould. The key factor of the process of consolidation is the use as binder a hybrid inorganic–organic monomer, formed by the reaction of zirconium propoxide and 2-hydroxy ethyl methacrylate. This type of monomer, mixed with the metallic powders, formed slurry having low viscosity, which was easily poured into mould. The binder stiffened upon polymerization. Some pieces were produced through debinding and sintering, both performed under inert atmosphere in order to avoid metal oxidation. Different microstructure and density were observed depending on the maximum sintering temperatures, ranging from 904 to 1,120 °C. In the sample sintered at 1,120 °C, the crystalline domains of the copper phase were of about 40 nm.

Keywords

Select Area Electron Diffraction Dynamic Mechanical Thermal Analysis HEMA Thermal Gravimetric Analysis Dynamic Mechanical Thermal Analysis 

Notes

Acknowledgments

Mr. Victor Micheli is greatly acknowledged for the hardness measurements.

References

  1. 1.
    Ma E (2000) Powder Metall 43:306Google Scholar
  2. 2.
    German RM (1984) Powder injection moulding. Metal Powder Industries Federation, Princeton, New JerseyGoogle Scholar
  3. 3.
    Wang JS, Lin SP, Hon MH, Wang MC (2000) Jpn J Appl Phys 39:616CrossRefGoogle Scholar
  4. 4.
    Di Maggio R, Gialanella S, Cesconi M, Molinari A (2003) Mater Sci Technol 19:1585CrossRefGoogle Scholar
  5. 5.
    Di Maggio R, Fambri L, Guerriero A (1998) Chem Mater 10:1777CrossRefGoogle Scholar
  6. 6.
    Di Maggio R, Fambri L, Cesconi M, Vaona W (2002) Macromolecules 35:5342CrossRefGoogle Scholar
  7. 7.
    Lenel FV, Hwang KS (1980) Powder Metall Int 12:581Google Scholar
  8. 8.
    Lenel FV (1980) Powder metallurgy: principle and application. Metal Powder Industries Federation, Princeton, NJ, p 285Google Scholar
  9. 9.
    Wanible Y, Yokoyama H, Itoh T (1990) Powder Metall 33:65CrossRefGoogle Scholar
  10. 10.
    Huang CT, Hwang KS (1996) Powder Metall 39:119CrossRefGoogle Scholar
  11. 11.
    Lawlock RL, Davies TJ (1990) Powder Metall 33:147CrossRefGoogle Scholar
  12. 12.
    Shen P, Hu JD, Guo ZX, Guan QF (1999) Metall Mater Trans 30A:2229CrossRefGoogle Scholar
  13. 13.
    Holtz RL, Provenzano V (1994) Nanostruct Mater 4:241CrossRefGoogle Scholar
  14. 14.
    He L, Ma E (1996) Nanostruct Mater 7:327 and references thereinGoogle Scholar
  15. 15.
    He L, Ma E (1996) J Mater Res 11:72CrossRefGoogle Scholar
  16. 16.
    Lutterotti L, Matthies S, Wenk H-R (1999) IUCr. Newsletter of the CPD 21:14Google Scholar
  17. 17.
    Deletz R (1993) In: Young RA (ed) The Rietveld method. IUCR monographs on crystallographyGoogle Scholar
  18. 18.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  19. 19.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3CrossRefGoogle Scholar
  20. 20.
    Ma E, Atzmon M, Pinkerton FE (1993) J Appl Phys 74:955CrossRefGoogle Scholar
  21. 21.
    Lábár JL (2002) Microscopy and analysis 75:9Google Scholar
  22. 22.
    Huang Z, Gu LY, Weertman JR (1997) Scripta Materialia 37:1071CrossRefGoogle Scholar
  23. 23.
    Yamaguchi K, Takakura N, Imatani S (1997) J Mater Proc Technol 63:364CrossRefGoogle Scholar
  24. 24.
    Radchenko OG, Getman OI (2001) Int J Hydr Energy 26:489CrossRefGoogle Scholar
  25. 25.
    Entel P, Kreth M, Meyer R, Kadau K (2004) Proceedings of the 3rd international conference on computational modeling and simulation of materials. In: Vincenzini P, Zerbetto F (eds) Advances in science and technology, vol 44. Acireale Italy, Techna Group, pp 101–112Google Scholar
  26. 26.
    Lee GH, Rhee CK, Lee MK, Kim WW, Ivanov VV (2004) Mater Sci Eng A 375–377:604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rosa Di Maggio
    • 1
    Email author
  • Gloria Ischia
    • 1
  • Mauro Bortolotti
    • 1
  • Federico Rossi
    • 1
  • Alberto Molinari
    • 1
  1. 1.Department of Materials Engineering and Industrial TechnologiesUniversity of TrentoTrentoItaly

Personalised recommendations