Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9409–9414 | Cite as

Sintering of ultra-fine tetragonal yttria-stabilized zirconia ceramics

  • Hwan-Cheol Kim
  • In-Jin Shon
  • In-Kyoon Jeong
  • In-Yong Ko
  • Z. A. Munir
Article

Abstract

High-frequency induction heated sintering (HFIHS) is utilized to consolidate ultra-fine grain tetragonal zirconia stabilized with 3 mol%Y2O3 (3Y-SZ) ceramics. Densification to near theoretical density in a relatively short time can be accomplished using this method. Samples of 3Y-SZ with a relative density of up to 99.5% and an average grain size of about 170 nm could be obtained by sintering at 950 °C for 5 min under a pressure of 100 MPa pressure. The influence of sintering temperature and mechanical pressure on the final density and grain size of the sintered products was investigated. The sintered materials had fracture toughness and hardness values of 4.4 MPa m1/2 and 10.7 GPa, respectively.

Keywords

Zirconia Fracture Toughness Sinter Temperature Spark Plasma Sinter Solid Oxide Fuel Cell 

Notes

Acknowledgements

This work was supported by the grant of Post-Doc. Program, Chonbuk National University (2005). The support of one of us (ZAM) by the Army Office of Research is acknowledged.

References

  1. 1.
    Minh NQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
  2. 2.
    Yamamoto O (2000) Elctrochim Acta 45:2423CrossRefGoogle Scholar
  3. 3.
    Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1982) Solid State Ionics 6:167Google Scholar
  4. 4.
    Mori M, Abe T, Itoh H, Yamamoto O, Takeda Y, Kawahara T (1994) Solid State Ionics 74:157CrossRefGoogle Scholar
  5. 5.
    Feighery AJ, Irvine JTS (1999) Solid State Ionics 121:209CrossRefGoogle Scholar
  6. 6.
    Khor KA, Yu LG, Chan SH, Chen XJ (2003) J Eur Ceram Soc 23:1855CrossRefGoogle Scholar
  7. 7.
    Gupta TK, Lange FF, Bechtold JH (1978) J Mater Sci 13:1464 DOI: 10.1007/BF00553200CrossRefGoogle Scholar
  8. 8.
    Yamamoto O, Takeda Y, Imanishi N, Kohno K, Kawahara T (1992) In: Proceedings of international fuel cell conference, 3–6 Feb, 1992. NEDO, Makuhari, p 385Google Scholar
  9. 9.
    Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Solid State Ionics 123:271CrossRefGoogle Scholar
  10. 10.
    Verkerk MJ, Middelhuis BJ, Burgraaf AJ (1982) Solid State Ionics 6:159CrossRefGoogle Scholar
  11. 11.
    Kim HC, Shon IJ, Garay JE, Munir ZA (2004) Int J Refract Met Hard Mater 22:257CrossRefGoogle Scholar
  12. 12.
    Yoshimura M, Ohji T, Sando M, Niihara K (1998) J Mater Sci Lett 17:1389CrossRefGoogle Scholar
  13. 13.
    Morell A, Mermosin A (1980) Bull Am Ceram Soc 59:626Google Scholar
  14. 14.
    Chen DJ, Mayo MJ (1996) J Am Ceram Soc 79:906CrossRefGoogle Scholar
  15. 15.
    Chen DJ, Mayo MJ (1993) Nanostruct Mater 2:469CrossRefGoogle Scholar
  16. 16.
    Omori M (2000) Mater Sci Eng A 287:183CrossRefGoogle Scholar
  17. 17.
    Tokita M (1997) Nyu Seramikkusu 10:43Google Scholar
  18. 18.
    Kim HC, Shon IJ, Munir ZA (2005) J Mater Sci 40:2849 DOI: 10.1007/s10853-005-2422-9CrossRefGoogle Scholar
  19. 19.
    Kim HC, Oh DY, Shon IJ (2004) Int J Refract Met Hard Mater 22:197CrossRefGoogle Scholar
  20. 20.
    Kim HC, Oh DY, Shon IJ (2004) Int J Refract Met Hard Mater 21:41CrossRefGoogle Scholar
  21. 21.
    Kim HC, Shon IJ, Yoon JK, Doh JM, Munir ZA (2006) Int J Refract Met Hard Mater 24:427CrossRefGoogle Scholar
  22. 22.
    Astm E112-96e2Google Scholar
  23. 23.
    Han JH, Kim DY (1998) Acta Mater 46:2021CrossRefGoogle Scholar
  24. 24.
    Grain CF (1967) J Am Ceram Soc 50:288CrossRefGoogle Scholar
  25. 25.
    Scott HG (1975) J Mater Sci 10:1527 DOI: 10.1007/BF01031853CrossRefGoogle Scholar
  26. 26.
    Kazutaka S (2001) Ph.D. Thesis, Tokyo UniversityGoogle Scholar
  27. 27.
    Takeuchi T, Kondoh I, Tamari N, Balakrishnan N, Nomura K, Kageyama H, Takeda Y (2002) J Electrochem Soc 149:A455CrossRefGoogle Scholar
  28. 28.
    Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2003) Ceram Int 29:151CrossRefGoogle Scholar
  29. 29.
    Coble RL (1970) J Appl Phys 41:4798CrossRefGoogle Scholar
  30. 30.
    Skandan G, Hahn H, Kear BH, Roddy M, Cannon WR (1994) Mater Lett 20:305CrossRefGoogle Scholar
  31. 31.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  32. 32.
    Niihara K (1985) Ceramics 20:1218Google Scholar
  33. 33.
    Oh DY, Kim HC, Yoon JK, Shon IJ (2005) J Alloys Compd 395:174CrossRefGoogle Scholar
  34. 34.
    Basu B, Vleugels J, Van Der Biest O (2004) J Eur Ceram Soc 24:2031CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hwan-Cheol Kim
    • 1
  • In-Jin Shon
    • 1
  • In-Kyoon Jeong
    • 1
  • In-Yong Ko
    • 1
  • Z. A. Munir
    • 2
  1. 1.Department of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Facility for Advanced Combustion Synthesis, Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations