Journal of Materials Science

, Volume 42, Issue 22, pp 9343–9354 | Cite as

Mechanical testing of disks under gaseous pressure

Calculation of biaxial mechanical properties applications and interests of the testing method
  • Vladimir Gantchenko
  • Patrice JouinotEmail author


Numerical calculations are becoming more and more efficient in estimating the lifetime of structures under thermomechanical loading. However, these life estimations cannot be reliable if the necessary parameters have not been correctly identified and measured and if all the causes of damage have not been considered. Disk testing under gas pressure is similar to oil bulging testing. However, disk testing can easily be used for the mechanical characterization of materials subject to more varied solicitations: monotone loading (biaxial rupture tests at strain rates from 10−6 to 100 s−1), constant loading under high stresses (sustained load) at elevated temperature (creep tests), cyclic loading (mechanical slow fatigue tests); the temperature may be chosen between 20 and 900 °C and the environment may be studied by comparing the results obtained with either an inert gas or reactive gas. Moreover, disk testing reveals light damage since crossing cracks through the thin membrane create leakages detected by a mass spectrometer. In this paper, we present an original method of calculation developed to determine the true mechanical properties of the pressurized disk; the method of calculation is validated because its numerical results are identical to the measured tensile properties. In addition, the range of uniform deformation is correctly determined; this property is needed to establish sheet formability which is not clearly determined by oil bulging. Of course, the mechanical behaviour can be determined within the whole ranges of temperature and strain rates; such wide ranges cannot be tested by other techniques such as tensile testing or oil bulging. As disk edges are not stressed during testing, the results are very reproducible at any temperature and at any strain rate while the machining or cutting defects initiate very scattered ruptures of tensile specimens tested at high temperature or at high strain rate. The disk and its loading simulate real applications with thin walls embedded by thick parts such as thermal exchangers or spatial engines. The analytical method of calculation may be used for identifying the needed parameters of thermomechanical modelling; it will be optimized by finite elements methods and it would allow a rational quantification of hydrogen embrittlement.


Uniform Elongation Secondary Creep Disk Testing Disk Thickness Helium Leakage 


  1. 1.
    Fidelle JP, Broudeur R, Roux C (1975) Les essais de disques sous pression. Ivry, France, Mai 1975, Ed. C.E.AGoogle Scholar
  2. 2.
    Fidelle JP (1985) Present status of the disk pressure test for hydrogen embrittlements. 2nd A.S.M. symposium on hydrogen embrittlement. Los Angeles, USA, Mai 1985Google Scholar
  3. 3.
    Fidelle JP, Jouinot P, Stasi M, Barthelemy H (1994) The range of application of disk pressure test. 5th international conference on hydrogen effects on material behaviour. Jackson Lake, USA, Sept 1994Google Scholar
  4. 4.
    Barthelemy H, Pressouyre G (1985) Hydrogen gas embrittlement of steels. European Economic Community, Report EUR 9730EN, Bruxelles, BelgiumGoogle Scholar
  5. 5.
    Gas containers. Cylinders and containers for compressed hydrogen. Test method for selecting construction materials. French standard NF E 29–732, Oct 1990Google Scholar
  6. 6.
    Vibrans G, Speitling A (1988) Investigation of hydrogen induced cracking of tempered 35CrMo4 during disk pressure test. 4th international conference “Hydrogen and materials”. Beijing, China, May 1988Google Scholar
  7. 7.
    Bachelet EJ, Troiano AR Hydrogen gas embrittlement and disk pressure test. Report NASA CR 134551, USAGoogle Scholar
  8. 8.
    Gantchenko V, Jouinot P, Stasi M (1999) Mechanical properties and failure analysis of metals and plastics cut off from a sheet or a vessel thin wall. EMAS, UK, Milano, ItalyGoogle Scholar
  9. 9.
    Gantchenko V, Jouinot P, Stasi M (1999) Etudes de matériaux par des essais de disques sous hélium, une technique sensible et performante. Matériaux et Techniques, Déc 1999CrossRefGoogle Scholar
  10. 10.
    Genevois-Stasi J (1998) Etude de l’évolution des propriétés mécaniques et métallurgiques de l’inconel 625 au cours du vieillissement, utilisation de l’essai de disques sous pression de gaz. Thèse, Paris 6, Juin 1998Google Scholar
  11. 11.
    Boulila A (2000) Etude expérimentale et modélisation numérique du gonflement hydraulique des plaques minces. DEA de Mecanique Appliquee, Ecole Nationale d'Ingenieurs de Tunis, TunisieGoogle Scholar
  12. 12.
    Hill R (1950) A theory of the plastic bulging of a metal diaphragm by lateral pressure. Phil Mag, Ser 7, 41(322):1133CrossRefGoogle Scholar
  13. 13.
    Mesrar R (1991) Comportement plastique des tôles sous sollicitation biaxiale et analyse numérique de la mise en forme par gonflement hydraulique. Thèse, Metz, 1991Google Scholar
  14. 14.
    Boulila A, Ayadi M, Zghal A, Jendoubi K (2002/3) Validation expérimentale du modèle de calcul en calotte sphérique de plaques circulaires minces sous l’effet d’un gonflement hydraulique. Mécanique et IndustriesGoogle Scholar
  15. 15.
    Jouinot P, Gantchenko V, Stasi M, Azou P (1988) High pressure disk test aided by computer. 4th international conference “Hydrogen and materials". Beijing, China, Mai 1988Google Scholar
  16. 16.
    Jouinot P (1991) Développement de l’essai de disques sous pression. Applications à la fragilisation par l’hydrogène d’aciers faiblement alliés. Thèse, Paris 6, Déc 1991Google Scholar
  17. 17.
    Francois D (1996) Essais mécaniques des matériaux, Détermination des lois de comportement. Techniques de l’ingénieur M120, ETI, FranceGoogle Scholar
  18. 18.
    Saint-Antonin F (1995) Essais de fluage. Techniques de l’ingénieur M140, ETI, FranceGoogle Scholar
  19. 19.
    Rabe P, Lieurade HP, Galtier A (2000) Les essais de fatigue. Techniques de l’ingénieur M4171, ETI, FranceGoogle Scholar
  20. 20.
    Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill Book, Company, Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut Superieur de Mecanique de Paris (ISMEP)L.I.S.M.M.A.-Physique des MateriauxSaint OuenFrance

Personalised recommendations