Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9300–9307 | Cite as

Redox behavior and reduction mechanism of Fe2O3–CeZrO2 as oxygen storage material

  • Vladimir Galvita
  • Kai Sundmacher
Article

Abstract

Fe2O3–CeZrO2 is a suitable oxygen storage material for the production of pure hydrogen by a cyclic water gas shift (CWGS) process which is based on the reduction of the material by syngas followed by the re-oxidation of the reduced material with water vapor. For identification of the reduction kinetics H2-temperature programmed reduction experiments were performed. Several kinetic models were tested and the activation energy of reduction was calculated by the Kissinger method, by model-based curve fitting and by the isoconversional analysis method. The reduction of Fe2O3–CeZrO2was found to occur in a four-step process including the reduction of Fe2O3,Fe3O4, and CeZrO2. The overall process can be interpreted as phase-boundary controlled reduction of Fe2O3 to Fe3O4, and two-dimensional nucleation controlled reduction of Fe3O4 to Fe and of CeO2 to Ce2O3. At higher oxygen conversion, the reduction of Fe3O4 and CeO2 are significantly influenced by volume-diffusion in the solid bulk.

Keywords

Fe2O3 CeO2 Mixed Oxide Proton Exchange Membrane Fuel Cell Isoconversional Method 

Notes

Acknowledgements

Funding for this research work by the German federal state of Saxony-Anhalt within the joint project “Dezentrales Brennstoffzellen-basiertes Energieerzeugungssystem für den stationä ren Betrieb in der Leistungsklasse 20 kW” is gratefully acknowledged. The authors are also very thankful to Dr. Heike Lorenz, Max-Planck-Institute in Magdeburg, for her support in performing the XRD measurements, and to Dr. Veit, Institute for Experimental Physics of Magdeburg University, for preparing SEM images of our materials.

References

  1. 1.
    Krumpelt M, Krause TR, Carter JD, Kopasz JP, Ahmed S (2002) Catal Today 77:3CrossRefGoogle Scholar
  2. 2.
    Armor JN (1999) Appl Catal A Gen 176:159CrossRefGoogle Scholar
  3. 3.
    Fukase S, Suzuka T (1993) Appl Catal A Gen 100:1CrossRefGoogle Scholar
  4. 4.
    Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M, Spreity B, Friedrich K (1998) J Power Sources 71:226CrossRefGoogle Scholar
  5. 5.
    Hacker V, Fankhauser R, Faleschini G, Fuchs H, Friedrich K, Muhr M, Kordesch K (2000) J Power Sources 86:531CrossRefGoogle Scholar
  6. 6.
    Hacker V (2003) J Power Sources 118:311CrossRefGoogle Scholar
  7. 7.
    Takenaka S, Son VTD, Hanaizumi N, Nomura K, Otsuka K (2004) Proceedings of 13th International Conference on Catalysis. 11–16 July 2004, Paris, FranceGoogle Scholar
  8. 8.
    Rossini S, Cornaro U, Mizia F, Malandrino A, Piccoli V, Sanfilippo D, Miracca I (2003) In: Eming G, Ernst S, Harth K, Rupp M (eds) Proceedings of the DGMK-Conference Innovation in the manufacture and use of hydrogen. 15–17 October, Dresden, Germany, pp 41–47Google Scholar
  9. 9.
    Otsuka K, Yamada C, Kaburagi T, Takenaka S (2003) Int J Hydrogen Energy 28:335CrossRefGoogle Scholar
  10. 10.
    Galvita V, Sundmacher K (2005) Appl Catalysis A Gen 289:121CrossRefGoogle Scholar
  11. 11.
    Galvita V, Sundmacher K (2005) Proceedings of 4th International Conference on environmental catalysis. 5–8 June, Heidelberg, Germany, p 270Google Scholar
  12. 12.
    Wimmers OJ, Arnoldy P, Moulijn JA (1986) J Phys Chem 90:1331CrossRefGoogle Scholar
  13. 13.
    Tiernan MJ, Barners PA, Parkers GMB (2001) J Phys Chem 105:220CrossRefGoogle Scholar
  14. 14.
    Lin HY, Chen YW, Li C (2003) Thermochim Acta 400:61CrossRefGoogle Scholar
  15. 15.
    Tiernan MJ, Barner PA, Parkes GMB (2001) J Phys Chem B 105:220CrossRefGoogle Scholar
  16. 16.
    Piotrowski K, Maondal K, Lorethova H, Stonawski L, Szymanski T, Wiltowski T (2005) Int J Hydrogen Energy 30:1543CrossRefGoogle Scholar
  17. 17.
    Wimmners OJ, Arnoldy P, Moulijn AJ (1986) J Phys Chem 90:1331CrossRefGoogle Scholar
  18. 18.
    Kanervo JM, Krause AOI (2001) J Phys Chem 105:9778CrossRefGoogle Scholar
  19. 19.
    Rown WE, Dollimore D, Galwey AK (1980) In: Bamford CH (ed) Chemical kinetics, reaction in the solid state, vol 22. Elsevier, Oxford New York, p 307Google Scholar
  20. 20.
    Kanervo JM (2003) Kinetic analysis of temperature-programmed reaction. Industrial Chemistry publication Series, No 16, Espoo, p 70Google Scholar
  21. 21.
    Kissinger HE (1957) Analyt Chem 29:1702CrossRefGoogle Scholar
  22. 22.
    Friedman HL (1965) Polym Sci Part C 6:183CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S, Wight CA (1997) Annu Rev Chem 48:125CrossRefGoogle Scholar
  24. 24.
    Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K (2002) Appl Catal A Gen 234:221CrossRefGoogle Scholar
  25. 25.
    Subrt J, Bohacek J, Stengl V, Grygar T, Bezdicka P (1999) Mat Res Bull 34:905CrossRefGoogle Scholar
  26. 26.
    Fornasiero P, Balducci G, Di Monte R, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M (1996) J Catal 164:173CrossRefGoogle Scholar
  27. 27.
    Fan J, Wu X, Ran R, Weng D (2005) Appl Surf Sci 245:162CrossRefGoogle Scholar
  28. 28.
    Al-Madfaa HA, Khader MM (2004) Mater Chem Phys 86:180CrossRefGoogle Scholar
  29. 29.
    Munteanu G, Ilieva L, Nedyalkova R, Andreeva D (2004) Appl Catal A Gen 277:31CrossRefGoogle Scholar
  30. 30.
    Giordano F, Trovarelli A, de Leitenburg C, Giona M (2000) J Catal 193:273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Otto-von-Guericke-University MagdeburgProcess Systems EngineeringMagdeburgGermany
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations