Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9331–9335 | Cite as

Production and characterization of metastable Al2O3–TiO2 ceramic materials

  • Irene G. Cano
  • Sergi Dosta
  • Joan Ramon Miguel
  • Jose Maria Guilemany
Article

Abstract

Producing nanostructured materials through metastable phases is interesting in the field of ceramic materials. Metastable phases can be obtained by the Atmospheric Plasma Spray (APS) technique which, is a well-known technique to produce coatings. The initial powders are melted during the spraying obtaining a homogenized phase due to their solubility in the liquid state. Afterwards, the molten droplets are quenched in a cooled medium, producing the sought metastable phases. Finally, during material consolidation, the metastable structure evolves due to a dual structure. A suppression of the grain growth is produced as a consequence of the immiscibility of both phases in the solid state. Due to their small grain size and uniform structure, these nanostructured materials exhibit very interesting properties such as higher hardness and toughness. The aim of this research has been to produce nanostructured Al2O3–TiO2 ceramic powders through APS + quenching route, starting from commercially available micron-sized powders. A complete characterization of the obtained structures using XRD, SEM, FESEM and EDS has been carried out in the Thermal Spray Center (CPT) of the University of Barcelona.

Keywords

TiO2 Atmospheric Plasma Spray Initial Powder Feedstock Powder Splat Quenching 

Notes

Acknowledgements

The authors wish to thank to the EU for the project NAMAMET STRP-001470 and to the Generalitat de Catalunya for the project 2005-SGR 00310.

References

  1. 1.
    Walker GS, Williams E, Bhattacharya AK (1997) J Mater Sci 32:5583, DOI: 10.1023/A:1018628608830CrossRefGoogle Scholar
  2. 2.
    Jansen SA, Grabatia SA, Buecheler NM (1993) Mater Res Soc Symp Proc 291:227CrossRefGoogle Scholar
  3. 3.
    Mehta SK, Sengupta S (1979) Nucl Instrum Methods Phys Res 164:349CrossRefGoogle Scholar
  4. 4.
    Beauvais S, Guipont V, Borit F, Jeandin M, Espalol M, Khor KA, Robisson A, Saenger R (2004) Surf Coat Technol 183:204CrossRefGoogle Scholar
  5. 5.
    Gell M, Jordan EH, Sohn YH, Gobernam D, Shaw L, Xiao TD (2001) Surf Coat Technol 146:48CrossRefGoogle Scholar
  6. 6.
    Jordan EH, Gell M, Sohn YH, Gobernam D, Shaw L, Jiang S, Wang M, Xiao TD, Wang Y, Strutt P (2001) Mater Sci Eng A301:80CrossRefGoogle Scholar
  7. 7.
    Liao SC, Chen YJ, Kear BH, Mayo WE (1998) Nanostruc Mater 10(6):1063CrossRefGoogle Scholar
  8. 8.
    Liao SC, Mayo WE, Pae KD (1997) Nanostruc Mater 8(6):645CrossRefGoogle Scholar
  9. 9.
    Kear BH, Kalman Z, Sadangi RK, Skandan G, Colaizzi J, Mayo WE (2000) J Therm Spray Tech 9(4):483CrossRefGoogle Scholar
  10. 10.
    Kear BH, Colaizzi J, Mayo WE, Liao S-C (2001) Scripta Mater 44(8/9):2065CrossRefGoogle Scholar
  11. 11.
    Colaizzi J, Kear BH, Mayo WE, Shropshire R, Rigney RW, Brunhouse S (2000) Proceedings of the International Thermal Spray Conference (ITSC), Montreal (Canada), p 813Google Scholar
  12. 12.
    Cano IG, Dosta S, Miguel JR, Guilemany JM (2006) Bol Soc Esp Ceram Vidr 46(3):123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Irene G. Cano
    • 1
  • Sergi Dosta
    • 1
  • Joan Ramon Miguel
    • 1
  • Jose Maria Guilemany
    • 1
  1. 1.University of BarcelonaBarcelonaSpain

Personalised recommendations