Journal of Materials Science

, Volume 42, Issue 22, pp 9440–9446 | Cite as

Interfacial energy determination of nano-scale precipitates by CALPHAD description of Gibbs–Thomson effect

  • Sina Shahandeh
  • Hamed Arami
  • S. K. SadrnezhaadEmail author


A theory based on calculation of phase diagrams in the binary systems was developed that describes Gibbs–Thomson effect. In this model effect of both interfacial energy and interface confinement (Laplace–Young pressure) are included in energy shift of alloys and phases. By using the CALPHAD model, interfacial energy of Cu4Ti precipitates in Cu–Ti system was obtained which shows better consistency with experimental results of Gibbs–Thomson effect of 10–20 nm radius precipitates.


Interfacial Energy Energy Shift CALPHAD Method Free Energy Curve Thomson Effect 


  1. 1.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  2. 2.
    Wagner C (1961) Z Elektrochem 65:581Google Scholar
  3. 3.
    Wagner R, Kampman R, Voorhees PW (2001) In: Kostorz G (ed) Phase transformations in materials. WILEY-VCH, WeinheimGoogle Scholar
  4. 4.
    Thomson W (Lord Kelvin) (1871) Phil Mag 42:448Google Scholar
  5. 5.
    Gibbs JW (1878) Am J Sci Ser 3:441CrossRefGoogle Scholar
  6. 6.
    Freundlich H (1923) Colloid and capillary chemistry. Dutton, New YorkGoogle Scholar
  7. 7.
    Miyazaki T, Koyama T, Kobayashi S (1996) Metall Mater Trans A 27:945CrossRefGoogle Scholar
  8. 8.
    Noble B, Bray SE (1999) Mater Sci Eng A 266:80CrossRefGoogle Scholar
  9. 9.
    Hillert M (1975) In: Aaroson HI (ed) Lectures on the theory of phase transformations. TMS-AIME, New York, NY, pp 51–81Google Scholar
  10. 10.
    Purdy GR (1971) Met Sci J 5:81CrossRefGoogle Scholar
  11. 11.
    Qian M, Lim LC (2000) Metal Mater Trans A 31:2659CrossRefGoogle Scholar
  12. 12.
    Martin JW, Doherty RD (1976) Stability of microstructure in metallic systems. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Qian M (2002) Metal Mater Trans A 33:1283CrossRefGoogle Scholar
  14. 14.
    Perez M (2005) Scripta Mater 52:709CrossRefGoogle Scholar
  15. 15.
    Shirinyan A, Wautelet M, Belogorodsky Y (2006) J Phys: Condens Matter 18:2537Google Scholar
  16. 16.
    Wang CX, Yang GW (2005) Mater Sci Eng R 49:157CrossRefGoogle Scholar
  17. 17.
    Glicksman ME (2000) Diffusion in solids: field theory, solid-state principles and application. John Wiley & Sons Inc., New YorkGoogle Scholar
  18. 18.
    Lupis CHP (1983) Chemical thermodynamic of materials. Nort-Holand: Elsevier Science, New YorkGoogle Scholar
  19. 19.
    Saunders N, Miodowink AP (1998) CALPHAD (Calculation of Phase Diagrams): a comprehensive guide. Elsevier Science LtdGoogle Scholar
  20. 20.
    Kampmann R, Wagner R (1984) In: Haasen P, Gerold V, Wagner R, Ashby MF (eds) Decomposition of alloys: the early stages. Pergamon Press, New York, pp 91–103CrossRefGoogle Scholar
  21. 21.
    Borchers C (1999) Philos Mag A 79:537CrossRefGoogle Scholar
  22. 22.
    Borchers C, Bormann R (2005) Acta Mater 53:3695CrossRefGoogle Scholar
  23. 23.
    Miyazaki T, Koyama T, Kobayashi S (1996) Metall Mater Trans A 27:945CrossRefGoogle Scholar
  24. 24.
    Qian M, Lim LC (1998) Scripta Mater 39:1451CrossRefGoogle Scholar
  25. 25.
    Kumar KCH, Ansara I, Wollants P, Delaey L (1986) Z Metallkd 87:749Google Scholar
  26. 26.
    Arroyave R, Eagar TW, Kaufman L (2003) J Alloys Comp 351:158CrossRefGoogle Scholar
  27. 27.
    Optimization Toolbox (2005) Matlab® software documentations. Mathworks IncGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sina Shahandeh
    • 1
  • Hamed Arami
    • 1
  • S. K. Sadrnezhaad
    • 1
    Email author
  1. 1.Materials and Energy Research CenterTehranIran

Personalised recommendations