Journal of Materials Science

, Volume 42, Issue 22, pp 9366–9378 | Cite as

A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions

  • B. S. B. Reddy
  • Karabi DasEmail author
  • Siddhartha Das


The aim of the present paper is to review the recent progress in the synthesis of in situ particle reinforced aluminum composites using thermal, mechanical and combined mechanical-thermal activation of aluminothermic reduction reactions. The combination of combustion synthesis (CS) and mechanosynthesis (MS) is the most recent development in the processing of advanced materials like micro and nano aluminum based composites. The combined mechanical thermal synthesis (MTS) has widened the possibilities for both CS and MS. MTS holds great potential for commercial viability and offers exciting processing route for the synthesis of advanced materials. Enhanced reaction kinetics and extended concentration limits in MTS are demonstrated by illustrating the synthesis of aluminum based nanocomposite involving Al–CeO2.


Milling Mechanical Activation Combustion Synthesis Combustion Reaction High Energy Ball Milling 


  1. 1.
    Tjong SC, Ma ZY (2000) Mater Sci Eng 29:49CrossRefGoogle Scholar
  2. 2.
    Girot FA, Quenisset JM, Naslain R (1987) Compos Sci Technol 30:155CrossRefGoogle Scholar
  3. 3.
    Torralba JM, da Costa CE, Velasco F (2003) J Mater Process Technol 133:203CrossRefGoogle Scholar
  4. 4.
    Daniel BSS, Murthy VSR, Murty GS (1997) J Mater Process Technol 68:132CrossRefGoogle Scholar
  5. 5.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  6. 6.
    Thostenson ET, Li C, Chou T-W (2005) Compos Sci Technol 65:491CrossRefGoogle Scholar
  7. 7.
    Gale WF, Tottemeier TC (eds) (2003) Smithells metals reference book, 8th edn. Elseiver, Butterworth, USAGoogle Scholar
  8. 8.
    Moore JJ, Feng HJ (1995) Prog Mater Sci 39:243CrossRefGoogle Scholar
  9. 9.
    Moore JJ, Feng HJ (1995) Prog Mater Sci 39:275CrossRefGoogle Scholar
  10. 10.
    Merzhanov G (1995) Ceram Int 21:371CrossRefGoogle Scholar
  11. 11.
    Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507CrossRefGoogle Scholar
  12. 12.
    Zhu P, Li JCM, Liu CT (2003) Mater Sci Eng A 357:248CrossRefGoogle Scholar
  13. 13.
    Gotman I, Koczak MJ, Shtessel E (1994) Mater Sci Eng A 187:189CrossRefGoogle Scholar
  14. 14.
    Wang D, Shi Z (2004) J Adv Mater 36:56Google Scholar
  15. 15.
    Peng HX, Wang DZ, Geng L, Yao CK (1997) Scripta Mater 37(2):199CrossRefGoogle Scholar
  16. 16.
    Huang Z-J, Yang B, Cui H, Zhang J-S (2003) Mater Sci Eng A 351:15CrossRefGoogle Scholar
  17. 17.
    Zhang DL (2004) Prog Mater Sci 49:537CrossRefGoogle Scholar
  18. 18.
    Matteazzi P, Le Caer G (1992) J Am Ceram Soc 75:2749CrossRefGoogle Scholar
  19. 19.
    Shingu PH, Ishihara KN (1995) JIM 36:96Google Scholar
  20. 20.
    Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Mater Sci Eng A 425:192CrossRefGoogle Scholar
  21. 21.
    Murthy BS, Ranganathan S (1998) Int Mater Rev 43:101CrossRefGoogle Scholar
  22. 22.
    Takacs L (2002) Prog Mater Sci 47:355CrossRefGoogle Scholar
  23. 23.
    (Sam) Froes FH, Trindade B (2004) J Mater Sci 39:5019CrossRefGoogle Scholar
  24. 24.
    Cocco G, Mulas G, Schiffini L (1995) JIM 36:150Google Scholar
  25. 25.
    McCormick PG (1995) JIM 36:161Google Scholar
  26. 26.
    Nagumo M (1995) JIM 36:170Google Scholar
  27. 27.
    Schaffer GB, McCormick PG (1989) Scripta Metall 23:835CrossRefGoogle Scholar
  28. 28.
    Schaffer GB, McCormick PG (1990) Metall Trans 21A:2789CrossRefGoogle Scholar
  29. 29.
    Botta FWJ, Tomasi R, Pallone EMJA, Yavari AR (2001) Scripta Mater 44:1735CrossRefGoogle Scholar
  30. 30.
    Lu L, Zhang YF (1999) J Alloys Compd 290:279CrossRefGoogle Scholar
  31. 31.
    Das D, Samntha A, Chattopadhyay PP (2006) Development of bulk nano-Al2O3 dispersed Cu-matrix composite using ball milled precursor. ICAMMP, IIT-Kharagpur, IndiaGoogle Scholar
  32. 32.
    Jain M et al (2004) Synthesis of Fe-Al2O3 nanocomposite through reactive milling. ISAMAP, IIT-Kharagpur, IndiaGoogle Scholar
  33. 33.
    Venugopal T, Prasad Rao K, Murty BS (2005) Mater Sci Eng A 393:382CrossRefGoogle Scholar
  34. 34.
    Takacs L (1992) Mater Lett I3:119CrossRefGoogle Scholar
  35. 35.
    Takacs L (1993) Nanostructured Mater 2:241CrossRefGoogle Scholar
  36. 36.
    Ivanov E, Suryanarayana C (2000) J Mater Synth Process 8:235CrossRefGoogle Scholar
  37. 37.
    Grigorieva TF, Barinova AP, Lyakhov NZ (2003) J Nanoparticle Res 5:439CrossRefGoogle Scholar
  38. 38.
    Wu JM, Li ZZ (2000) J Alloys Compd 299:9CrossRefGoogle Scholar
  39. 39.
    Xi S, Qu X, Ma M, Zhou J, Zheng X, Wang X (1998) J Alloys Compd 268:211CrossRefGoogle Scholar
  40. 40.
    Grigorieva TF, Korchagin M, Lyakhov NZ (2002) KONA 20:144CrossRefGoogle Scholar
  41. 41.
    Osso D, Tillement O, Mocellin A, Le Caer G, Babushkin O, Lindback T (1995) J Eur Ceram Soc 15:1207CrossRefGoogle Scholar
  42. 42.
    Shaw LL (2001) Mater Manufact Process 16:405CrossRefGoogle Scholar
  43. 43.
    Li J, Li F, Hu K (2004) J Mater Process Technol 147:236CrossRefGoogle Scholar
  44. 44.
    Reddy BSB, Das K, Pabi SK, Das S (2007) Mater Sci Eng A 445–446:341CrossRefGoogle Scholar
  45. 45.
    Reddy BSB, Karabi Das, Pabi SK, Das Siddhartha (in press) Preparation of Al–Ce/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment, PMAI-2006, Hyderabad, IndiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations