Journal of Materials Science

, Volume 42, Issue 22, pp 9379–9391 | Cite as

The effect of caesium on barium hollandites studied by neutron diffraction and magic-angle spinning (MAS) nuclear magnetic resonance

  • Karl R. WhittleEmail author
  • Sharon E. Ashbrook
  • Gregory R. Lumpkin
  • Ian Farnan
  • Ronald I. Smith
  • Simon A. T. Redfern


The structural effects of incorporating Cs into the monoclinic and tetragonal hollandites Ba1.2−xCsxMg1.2−x/2Ti6.8+x/2O16 and Ba1.2−xCsxAl2.4−xTi5.6+xO16 have been studied using powder neutron diffraction and 133Cs and 27Al MAS NMR. Addition of Cs to the monoclinic structure induces a ‘shear-type collapse’, in agreement with previously published results. NMR spectra show that the addition of Cs does not change the local structure around the Al cations within the tunnel walls. An algorithm is given that allows a prediction of unit cell parameters to be made for tetragonal hollandites containing barium.


Nuclear Magnetic Resonance Spectrum Neutron Diffraction Quadrupolar Interaction Tunnel Wall 27Al Nuclear Magnetic Resonance 



The authors wish to acknowledge the help of Dr E.R. Maddrell at British Nuclear Fuels Limited for helpful discussions, CMI—The Cambridge MIT Institute (KRW) and the EPSRC for funding this work.


  1. 1.
    Carter ML (2004) Mater Res Bull 39:1075Google Scholar
  2. 2.
    Ramakrishnan PA, Sugantha M, Varadaraju UV, Nagarajan T (1998) Mater Lett 36:137CrossRefGoogle Scholar
  3. 3.
    Chu LW, Hsiue GH, Chiang YJ, Liu KS, Lin IN (2004) J Eur Ceramic Soc 24:1781CrossRefGoogle Scholar
  4. 4.
    Guignot N, Andrault D (2004) Phys Earth Planet Interiors 143–144:107CrossRefGoogle Scholar
  5. 5.
    Fanchon E, Vicat J, Hodeau JL, Wolfers P, Qui DT, Strobel P (1987) Acta Crystallogr B: Struct Sci 43:440CrossRefGoogle Scholar
  6. 6.
    Cheary RW (1986) Acta Crystallogr B: Struct Sci 42:229CrossRefGoogle Scholar
  7. 7.
    Post JE, Von Dreele RB, Buseck PR (1982) Acta Crystallogr B: Struct Sci B38:1056CrossRefGoogle Scholar
  8. 8.
    Cheary RW (1987) Acta Crystallogr B: Struct Sci 43:28CrossRefGoogle Scholar
  9. 9.
    Cheary RW, Kwiatkowska J (1984) J Nucl Mater 125:236CrossRefGoogle Scholar
  10. 10.
    Smith RI, Hull S, Armstrong AR (1994) In: The polaris powder diffractometer at IsisGoogle Scholar
  11. 11.
    Smith RI, Hull S (1997) User guide for the polaris powder diffractometer at ISIS, RAL-TR-97-038, Rutherford Appleton LaboratoryGoogle Scholar
  12. 12.
    Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAS), 86–748, Los Alamos National Laboratory Report LAURGoogle Scholar
  13. 13.
    Toby BH (2001) J Appl Crystallogr 34:210CrossRefGoogle Scholar
  14. 14.
    Mooibroek S, Wasylishen RE, Dickson R, Facey G, Pettitt BA (1986) J Magn Reson 66:542Google Scholar
  15. 15.
    Amoureux JP, Fernandez C, Steuernagel S (1996) J Magn Reson A 123:116CrossRefGoogle Scholar
  16. 16.
    States DJ, Haberkorn RA, Ruben DJ (1982) J Magn Reson 48:286Google Scholar
  17. 17.
    Ernst RR, Bodenhausen G, Wokaun A (1987) OxfordGoogle Scholar
  18. 18.
    Harris RK, Becker ED, de Menezes SMC, Goodfellow R, Granger P (2002) Solid State Nucl Magn Reson 22:458CrossRefGoogle Scholar
  19. 19.
    Carter ML, Vance ER, Mitchell DRG, Hanna JV, Zhang Z, Loi E (2002) J Mater Res 17:2578CrossRefGoogle Scholar
  20. 20.
    Hartman JS, Vance ER, Power WP, Hanna JV (1998) J Mater Res 13:22CrossRefGoogle Scholar
  21. 21.
    Vega AJ (1996) In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. ChichesterGoogle Scholar
  22. 22.
    Kentgens APM (1997) Geoderma 80:271CrossRefGoogle Scholar
  23. 23.
    McManus J, Ashbrook SE, MacKenzie KJD, Wimperis S (2001) J Non-Crystalline Solids 282:278CrossRefGoogle Scholar
  24. 24.
    Frydman L, Harwood JS (1995) J Am Chem Soc 117:5367CrossRefGoogle Scholar
  25. 25.
    Brown SP, Wimperis S (1997) J Magn Reson 128:42CrossRefGoogle Scholar
  26. 26.
    Bodart PR (1998) J Magn Reson 133:207CrossRefGoogle Scholar
  27. 27.
    Shannon RD (1976) Acta Crystallogr A A32:751CrossRefGoogle Scholar
  28. 28.
    Shannon RD, Prewitt CT (1969) Acta Crystallogr B: Struct Sci B25:925CrossRefGoogle Scholar
  29. 29.
    Sinclair W, McLaughlin GM, Ringwood AE (1980) Acta Crystallogr B 36:2913CrossRefGoogle Scholar
  30. 30.
    Cheary RW (1991) Acta Crystallogr B: Struct Sci 47:325CrossRefGoogle Scholar
  31. 31.
    Vogt T, Schweda E, Wustefeld C, Strahle J, Cheetham AK (1989) J Solid State Chem 83:61CrossRefGoogle Scholar
  32. 32.
    Watanabe M, Fujiki Y, Kanazawa Y, Tsukimura K (1987) J Solid State Chem 66:56CrossRefGoogle Scholar
  33. 33.
    Pring A, Smith DJ, Jefferson DA (1983) J Solid State Chem 46:373CrossRefGoogle Scholar
  34. 34.
    Onoda Y, Fujiki Y, Yoshikado S, Ohachi T, Taniguchi I (1986) Solid State Ionics 18–9:878CrossRefGoogle Scholar
  35. 35.
    Weber HP, Schulz H (1983) Zeitschrift Fur Kristallographie 162:232Google Scholar
  36. 36.
    Lumpkin GR, Ribbe PH (1983) Am Mineral 68:164Google Scholar
  37. 37.
    Chakoumakos BC (1984) J Solid State Chem 53:120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Karl R. Whittle
    • 1
    • 2
    Email author
  • Sharon E. Ashbrook
    • 1
    • 3
  • Gregory R. Lumpkin
    • 1
    • 4
  • Ian Farnan
    • 1
  • Ronald I. Smith
    • 5
  • Simon A. T. Redfern
    • 1
  1. 1.Department of Earth Sciences, Cambridge Centre for Ceramic ImmobilisationUniversity of CambridgeCambridgeUK
  2. 2.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK
  3. 3.Department of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeUK
  4. 4.Australian Nuclear Science and Techonology Organisation (ANSTO), PMB 1MenaiAustralia
  5. 5.ISIS Facility, Rutherford Appleton LaboratoryChilton, Didcot, OxfordshireUK

Personalised recommendations