Journal of Materials Science

, Volume 42, Issue 22, pp 9465–9468 | Cite as

Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs)

  • Daniel M. Hawkins
  • E. Ann Ellis
  • Derek Stevenson
  • Andreas Holzenburg
  • Subrayal M. ReddyEmail author


We report the transmission electron microscopy (TEM) imaging of a hydrogel based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that tentatively suggests molecularly imprinted cavities, ranging from 5 to 50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase.


Molecularly Imprint Polymer Imprint Polymer Template Molecule Sample Preparation Technique Template Protein 



The authors would like to gratefully acknowledge the financial support provided by the Department of Trade and Industry and the Engineering and Physical Sciences Research Council.


  1. 1.
    Liao JL, Wang Y, Hjerten S (1996) Chromatographia 42:359CrossRefGoogle Scholar
  2. 2.
    Hjerten S, Liao JL, Nakazato K, Wang Y, Zamaratskaia G, Zhang HX (1997) Chromatographia 44:227CrossRefGoogle Scholar
  3. 3.
    Tong D, Hetenyi C, Bikadi Z, Gao JP, Hjerten S (2001) Chromatographia 54:7CrossRefGoogle Scholar
  4. 4.
    Hawkins DM, Stevenson D, Reddy SM (2005) Anal Chim Acta 542:61CrossRefGoogle Scholar
  5. 5.
    Rucker B, Kolb U (2005) Micron 36:247CrossRefGoogle Scholar
  6. 6.
    Zhang ZH, Long YM, Liu YJ, Yao SZ (2004) Instrum Sci Technol 32:507CrossRefGoogle Scholar
  7. 7.
    Carter SR, Rimme S (2004) Adv Funct Mater 14:553CrossRefGoogle Scholar
  8. 8.
    Zhang ZH, Liu YJ, Long YM, Nie LH, Yao SZ (2004) Anal Sci 20:291CrossRefGoogle Scholar
  9. 9.
    Suzuki M, Yumoto M, Shirai H, Hanabusa K (2005) Org Biomol Chem 3:3073CrossRefGoogle Scholar
  10. 10.
    Hu Y, Chen W, Chen J, Zhang Z (2003) Mater Lett 57:1312CrossRefGoogle Scholar
  11. 11.
    Hu Y, Chen J, Chen W, Ning J (2003) Mater Lett 58:2911CrossRefGoogle Scholar
  12. 12.
    Matzelle TR, Ivanov DA, Landwehr D, Heinrich LA, Herkt-Bruns C, Reichelt R, Kruse N (2002) J Phys Chem B 106:2861CrossRefGoogle Scholar
  13. 13.
    Zhang J, Peppas NA (2002) J Biomater Sci Poly Ed 13:511CrossRefGoogle Scholar
  14. 14.
    Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, Lee I-S (2005) J Neurosci Meth 148:60CrossRefGoogle Scholar
  15. 15.
    Nation JL (1983) Stain Technol 58:347CrossRefGoogle Scholar
  16. 16.
    Estroff LA, Leiserowitz L, Addadi A, Weiner S, Hamilton AD (2003) Adv Mater 15:38CrossRefGoogle Scholar
  17. 17.
    Chen W, Yuan Y, Yan L (2000) Mater Res Bull 35:807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daniel M. Hawkins
    • 1
  • E. Ann Ellis
    • 2
  • Derek Stevenson
    • 1
  • Andreas Holzenburg
    • 2
  • Subrayal M. Reddy
    • 1
    Email author
  1. 1.School of Biomedical and Molecular SciencesUniversity of SurreyGuildfordUK
  2. 2.Microscopy & Imaging CentreTexas A&M UniversityCollege StationUSA

Personalised recommendations