Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4707–4711 | Cite as

Nickel and zirconia toughened alumina prepared by hydrothermal processing

  • Husheng Jia
  • Xin Liu
  • Tianbao Li
  • Hong Yan
  • Xuguang Liu
  • Bingshe XuEmail author
Letter

Ceramics are attractive candidates for structural systems due to their strength at high temperatures. However, the major limitation to their application is their low fracture toughness. A major research objective for ceramic communities has, therefore, been to improve the fracture toughness of ceramics. The past two decades have seen the emergence of a number of studies concerned with toughening [1, 2, 3]. There are two types of mechanisms to improve the resistance to crack propagation, that is, by increasing the inherent toughness (energy dissipation) of the material and reducing the local crack-tip driving force [4], such as residual stress effects, phase transition toughening, crack deflection, nano-composites toughing, and bridging by ductile particles, fibers, and whiskers [5]. The addition of a dispersed second-phase inclusion, which limits the propagation of cracks is one of the most commonly used approaches. With the addition of either zirconia particles [6] or silicon carbide...

Keywords

Fracture Toughness Boehmite Zirconia Particle ZrO2 Particle Zirconium Hydroxide 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Shanxi Province (20050016).

References

  1. 1.
    Garvie RC, Hannink RHJ, Pascoe RT (1975) Nature (London) 258:703CrossRefGoogle Scholar
  2. 2.
    Claussen N (1976) J Am Ceram Soc 59(1–2):49CrossRefGoogle Scholar
  3. 3.
    De Aza Antonio H (2003) J Am Ceram Soc 86(1):115CrossRefGoogle Scholar
  4. 4.
    Ritchie RO (1988) Mater Sci Eng 103A:15CrossRefGoogle Scholar
  5. 5.
    Ashby MF, Blunt FJ, Bannister M (1989) Acta Metallur 37:1847CrossRefGoogle Scholar
  6. 6.
    Claussen N (1984) In: Claussen N, Rühle M, Heuer AM (eds) Advances in ceramics. Amercian Ceramic Society, Columbus, OH, pp 325Google Scholar
  7. 7.
    Wang J, Stevens R (1988) J Mater Sci 23:804CrossRefGoogle Scholar
  8. 8.
    Chen RZ, Chiu YT, Tuan WH (2000) J Eur Ceram Soc 20:1901CrossRefGoogle Scholar
  9. 9.
    Vekinis G, Sofianopoulos E, Tomlinson WJ (1997) Acta Mater 45(11):4651CrossRefGoogle Scholar
  10. 10.
    Kim BN, Hiraga K, Sakka Y (2001) Nature 413:288CrossRefGoogle Scholar
  11. 11.
    James HA, Sridhar V, Seung-Beom C et al (1998) United States Patent, US005759213AGoogle Scholar
  12. 12.
    Gibson CP, Kathy JP (1995) Science 267:1338CrossRefGoogle Scholar
  13. 13.
    Messing GL, Kumagai M (1989) J Am Ceram Soc 72(1):40CrossRefGoogle Scholar
  14. 14.
    Srdic VV, Radonjic L (1997) J Am Ceram Soc 80(8):2056CrossRefGoogle Scholar
  15. 15.
    Thevenot F, Homerin P (1992) In: Thevenot F (ed) Ceramiques composites a Particules. Cas du Frittage-Reaction (FORCERAM). Septima, Paris, France, p 39Google Scholar
  16. 16.
    Davidge RW, Green TJ (1968) J Mater Sci 3:629CrossRefGoogle Scholar
  17. 17.
    Evans AG, Charles EA (1976) J Am Ceram Soc 59:371CrossRefGoogle Scholar
  18. 18.
    Lieberthal M, Kaplan WD (2001) Mater Sci Eng A 302(1):83CrossRefGoogle Scholar
  19. 19.
    Mills H, Blackburn S (2000) J Eur Ceram Soc 20:1085CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Husheng Jia
    • 1
    • 2
  • Xin Liu
    • 1
    • 2
  • Tianbao Li
    • 1
    • 2
  • Hong Yan
    • 1
    • 2
  • Xuguang Liu
    • 1
    • 2
  • Bingshe Xu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations