Journal of Materials Science

, Volume 42, Issue 15, pp 5915–5923 | Cite as

Thermal property evolution of metal based thermal barrier coatings with heat treatments

  • Dong-Il ShinEmail author
  • François Gitzhofer
  • Christian Moreau


Predicting “in-service” lifetime of ceramic thermal barrier coatings (TBCs) is difficult due to the inherent brittle nature of ceramics used. Therefore, the study of metal-based thermal barrier coatings (MBTBCs) has been initiated to challenge the current problems of ceramic-based TBCs (CBTBCs) and create a new generation of thermal barrier coatings (TBCs). In this work, nano/amorphous structured MBTBCs, for use in internal combustion engines, have been produced using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. Coatings were deposited by IPS using various spray parameters and heat treated up to 850 °C to study the thermal stability of the coating. The thermal diffusivity (α) properties of MBTBCs were measured using a laser flash method. Density (ρ) and specific heat (Cp) of the MBTBCs were also measured for calculating thermal conductivity (k = αρCp).


Thermal Diffusivity Heat Treatment Thermal Barrier Coating Yttria Stabilize Zirconia Total Thermal Conductivity 


  1. 1.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. John Wiley and Sons, New York, p. 595Google Scholar
  2. 2.
    Slifka AJ, Filla BJ, Phelps JM, Bancke G, Berndt CC (1998) J Thermal Spray Technol 7(1):43CrossRefGoogle Scholar
  3. 3.
    Zhu D (U.S. Army Research Laboratory), Miller RA (2004) Thermal and environmental barrier coatings for advanced propulsion engine systems. Annual forum proceedings – American Helicopter Society, vol 1, 60th Annual forum proceedings – American Helicopter Society, pp 703–709Google Scholar
  4. 4.
    Schlichting KW, Padture NP, Klemens PG (2001) J Mater Sci 36:3003CrossRefGoogle Scholar
  5. 5.
    Kumar S, Vradis GC (1994) Trans ASME 116:28CrossRefGoogle Scholar
  6. 6.
    Klemens PG (1997) Theory of thermal conductivity of nano-phase materials, chemistry and physics of nanostructures and related non-equilibrium materials. Warrendale, PA, USA, pp 97–104Google Scholar
  7. 7.
    Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) Scripta Mater 39(8):1119CrossRefGoogle Scholar
  8. 8.
    Yang H-S, Eastman JA, Thomson LJ, Bai GR (2002) Mater Res Soc Symp Proc 703:179Google Scholar
  9. 9.
    Shin D, Gitzhofer F, Moreau C (2004) In: Proceedings of ITSC 2004, May 2004, Osaka, The nanostructure material sectionGoogle Scholar
  10. 10.
    Shin D, Gitzhofer F, Moreau C (2005) In: Proceedings of ITSC 2005, May 2–3, Basel, SwissGoogle Scholar
  11. 11.
    Branagan DJ, Swank WD, Haggard DC, Fincke JR (2001) Metall Mater Trans A 32A:2615CrossRefGoogle Scholar
  12. 12.
    Shin D-I, Gitzhofer F, Moreau C (2007) J Thermal Spray Technol 16(1):118CrossRefGoogle Scholar
  13. 13.
    Rohan P, Bouaricha S, Legoux J-G, Moreau C, Ctibor P, Nourouzi S, Vardelle A (2004) In: Proceedings of ITSC 2004, May 2004, Osaka, JapanGoogle Scholar
  14. 14.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. John Wiley & Sons, NY, USAGoogle Scholar
  15. 15.
    Cullity BD (1990) Elements of X-ray diffraction, 2nd edn. in Korean Version. Bando Publishing Co. Ltd, Korea (translated by B.H. Han)Google Scholar
  16. 16.
    Haraguchi T, Yoshimi K, Kato H, Hanada S, Inoue A (2003) Intermetallics 11:707CrossRefGoogle Scholar
  17. 17.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32(9):1679CrossRefGoogle Scholar
  18. 18.
    Hook J, Hall H (1991) Solid state physics, 2nd edn. John Wiley and SonGoogle Scholar
  19. 19.
    Kittel C (1996) Introduction to solid state physics, 7th edn. John & Wiley Inc, ChichesterGoogle Scholar
  20. 20.
    CES Selector 4.1, Granta Design Limited, Rustat House, 62 Clifton Road, Cambridge, CB1 7EG, UKGoogle Scholar
  21. 21.
    Khor KA, Gu YW (2000) Thin Solid Films 372:104CrossRefGoogle Scholar
  22. 22.
    Gitzhofer F, Pawlowski L, Lombard D, Martin C, Kaczmarek R, Boulos M (1985) High Temp – High Pres 17(5):563Google Scholar
  23. 23.
    Wriedt HA (1990) In: Massalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, pp 1739–1744Google Scholar
  24. 24.
    Yamasaki M, Kagao S, Kawamura Y, Yoshimura K (2004) Appl Phys Lett 84(23):4653CrossRefGoogle Scholar
  25. 25.
    Harms U, Shen TD, Schwarz RB (2002) Scripta Mater 47:411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dong-Il Shin
    • 1
    Email author
  • François Gitzhofer
    • 2
  • Christian Moreau
    • 3
  1. 1.Tekna Plasma Systems Inc.SherbrookeCanada
  2. 2.Centre de Recherche Energy, Plasma, and Electrochimique (CREPE), Department of Chemical EngineeringUniversité de SherbrookeSherbrookeCanada
  3. 3.Industrial Materials InstituteNational Research Council of CanadaBouchervilleCanada

Personalised recommendations