Journal of Materials Science

, Volume 42, Issue 19, pp 8203–8208 | Cite as

Stress characterization of surface damages on soda-lime glass using a nanocontact deformation method

  • Yun-Hee LeeEmail author
  • Ju-Young Kim
  • Unbong Baek
  • Seung-Hoon Nahm


A nanocontact deformation method was used to measure the local and graded residual stresses around contact damages. By analyzing influences of the residual stress on nanocontact deformation itself instead of measuring the secondary crack emanated from it, 0.65 μm spatial resolution, which was superior to the highest level 1.8 μm attained by previous indentation fracture mechanics tests with an acute cube-corner indenter, was obtained with a general Berkovich indenter. However, a stress model combined with the nanocontact deformation provided only average stress variation around the contact damages. Thus, a resolution of two principal components from the residual stress in a biaxial state has been attempted in this study. By introducing radial microcracks around artificial microVickers damages, a crack-normal circumferential stress component disappeared and a series of nanoindentations close to the microcrack line yielded a variation of the radial stress component. By comparing this result with the average stress variation mentioned above, the crack-opening circumferential stress was measured and showed a good consistency with the previous study in soda-lime glass. In addition, distinctive features of present method were compared with previous indentation fracture mechanics method.


Residual Stress Circumferential Stress Radial Crack Indentation Load Biaxial Stress 


  1. 1.
    Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049CrossRefGoogle Scholar
  2. 2.
    Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, London, p 249Google Scholar
  3. 3.
    Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63:574CrossRefGoogle Scholar
  4. 4.
    Anton RJ, Miskioglu I, Subhash G (1999) Exp Mech 39:227CrossRefGoogle Scholar
  5. 5.
    Lucazeau G, Abello L (1997) J Mater Res 12:2262CrossRefGoogle Scholar
  6. 6.
    Banini GK, Chaudhri MM, Smith T, Hayward IP (2001) J Phys D: Appl Phys. 34:L122CrossRefGoogle Scholar
  7. 7.
    Zeng K, Rowcliffe DJ (1995) Acta Metall Mater 43:1935CrossRefGoogle Scholar
  8. 8.
    Kese K, Rowcliffe DJ (2003) J Am Ceram Soc 86:811CrossRefGoogle Scholar
  9. 9.
    Pharr GM (1998) Mater Sci Eng A 253:151CrossRefGoogle Scholar
  10. 10.
    Fett T, Burghard Z, Zimmermann A, Aldinger F (2004) Adv Eng Mater 6:914CrossRefGoogle Scholar
  11. 11.
    Burghard Z, Zimmermann A, Rödel J, Aldinger F, Lawn BR (2004) Acta Mater 52:293CrossRefGoogle Scholar
  12. 12.
    Lee Y-H, Kwon D (2003) Scripta Mater 49:459CrossRefGoogle Scholar
  13. 13.
    Lee Y-H, Kwon D (2004) Acta Mater 52:1555CrossRefGoogle Scholar
  14. 14.
    Sawa T, Akiyama Y, Shimamoto A, Tanaka K (1999) J Mater Res 14:2228CrossRefGoogle Scholar
  15. 15.
    Hagan JT (1980) J Mater Sci 15:1417CrossRefGoogle Scholar
  16. 16.
    Lathabai S, Rödel J, Dabbs T, Lawn BR (1991) J Mater Sci 26:2157CrossRefGoogle Scholar
  17. 17.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  18. 18.
    Swain MV, Hagan JT (1976) J Phys D: Appl Phys 9:2201CrossRefGoogle Scholar
  19. 19.
    Hill R (1971) Mathematical theory of plasticity. Oxford University Press, Oxford, p 97Google Scholar
  20. 20.
    Schwarzer N, Hermann I, Chudoba T, Richter F (2001) Surf Coat Technol 146–147:371CrossRefGoogle Scholar
  21. 21.
    Yoffe EH (1982) Philos Mag A 46:617CrossRefGoogle Scholar
  22. 22.
    Lawn BR, Evans AG (1977) J Mater Sci 12:2195CrossRefGoogle Scholar
  23. 23.
    Ishikawa H, Shinkai N (1982) J Am Ceram Soc 65:C-124CrossRefGoogle Scholar
  24. 24.
    Jung Y-G, Pajares A, Banerjee A, Lawn BR (2004) Acta Mater 52:3459CrossRefGoogle Scholar
  25. 25.
    Lee Y-H, Takashima K, Higo Y, Kwon D (2004) Scripta Mater 51:887CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yun-Hee Lee
    • 1
    Email author
  • Ju-Young Kim
    • 2
  • Unbong Baek
    • 1
  • Seung-Hoon Nahm
    • 1
  1. 1.Division of Metrology for Quality LifeKorea Research Institute of Standards and ScienceDaejeonKorea
  2. 2.School of Materials Science and EngineeringSeoul National UniveristySeoulKorea

Personalised recommendations