Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10219–10227 | Cite as

Effect of coupling agents on the crystallinity and viscoelastic properties of composites of rice hull ash-filled polypropylene

  • Roya KhalilEmail author
  • Andrew George Chryss
  • Margaret Jollands
  • Satinath Bhattacharya
Article

Abstract

This paper focuses on the application of silica rich, rice hull ash (RHA) from the rice industry as filler in polypropylene (PP). The dynamic rheological behaviour and the crystallinity of its composites with semi-amorphous polypropylene were used as performance indicators. The effect of coupling agents on RHA/PP compatibility was also investigated. Addition of RHA increased storage modulus (G′), and the onset (Tco) and peak (Tc) crystallinity temperatures, and decreased the degree of crystallinity of the system. Two coupling agents, maleated polypropylene (MAPP) and an amino functional silane, were used to improve the interfacial adhesion of RHA and PP. Addition of MAPP increased G′, Tc and Tco and the crystalline phase of the system. Addition of silane had mixed effects. It increased the rheological properties at higher concentrations, it increased Tc and Tco at all the concentrations and increased crystallinity at lower concentrations and decreased it at higher concentrations. Results from a thermogravimetric analyser were useful in revealing the mechanism by which silane bond to RHA and its effect on the rheology and crystallisation behaviour of the composites.

Keywords

Fumed Silica Coupling Agent Silanol Group Rice Hull Linear Viscoelastic Region 

References

  1. 1.
    Kalapathy U, Proctor A, Shultz J (2002) Bioresour Technol 85:285CrossRefGoogle Scholar
  2. 2.
    Chaudhary DS (2004) In: School of civil and chemical engineering. Royal Melbourne Institute of Technology, MelbourneGoogle Scholar
  3. 3.
    Fuad M, Zaini MJ, Ishak ZAM, Omar AKM (1995b) Eur Polym J 31(9):885CrossRefGoogle Scholar
  4. 4.
    White JL, Czarnecki L, Tanaka H (1998) Rubber Chem Technol 53:823CrossRefGoogle Scholar
  5. 5.
    Boira MS, Chaffey C (1977) Polym Eng Sci 17:715CrossRefGoogle Scholar
  6. 6.
    Han CD, Weghe VD, Shete P, Haw JR (1981) Polym Eng Sci 21:196CrossRefGoogle Scholar
  7. 7.
    Lozano K, Yang S, Zeng Q (2004) J Appl Polym Sci 93:155CrossRefGoogle Scholar
  8. 8.
    Yuan X, Zhang Y, Zhang X (1998) J Appl Polym Sci 71:333CrossRefGoogle Scholar
  9. 9.
    Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) J Reinforced Plastics Compos 23(6):632CrossRefGoogle Scholar
  10. 10.
    Velasco JI, De Saja JA, Martinez AB (1996) J Appl Polym Sci 61:125CrossRefGoogle Scholar
  11. 11.
    Ren Z, Shanks RA, Rook TJ (2001) J Appl Polym Sci 79(11):1942CrossRefGoogle Scholar
  12. 12.
    Mueller R, Kammler HK, Wegner K, Pratsinis ES (2003) Langmuir 19:160CrossRefGoogle Scholar
  13. 13.
    Zhao XS, Lu GQ, Whitetaker AK, Millar GJ, Zhu HY (1997) J Phys Chem 101:6525CrossRefGoogle Scholar
  14. 14.
    Son J, Gardner DJ, O’Neill S, Metaxas C (2003) J Appl Polym Sci 89:1638CrossRefGoogle Scholar
  15. 15.
    Maiti SN, Hassan M (1989) J Appl Polym Sci 37(7):2019CrossRefGoogle Scholar
  16. 16.
    Liu Q, Ding J, Chamabers DE, Debnath S, Wunder SL, Baran GR (2001) J Biomed Mater Res 57(3):384CrossRefGoogle Scholar
  17. 17.
    Yoon HK, Lee HW, Park OO (1998) J Appl Sci 70:389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Roya Khalil
    • 1
    Email author
  • Andrew George Chryss
    • 1
  • Margaret Jollands
    • 1
  • Satinath Bhattacharya
    • 1
  1. 1.Rheology and Materials Processing Centre, School of Civil and Chemical EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations