Journal of Materials Science

, Volume 42, Issue 18, pp 7899–7905 | Cite as

Fatigue, retention and switching properties of PLZT(x/30/70) thin films with various La concentrations

  • Seong Jun KangEmail author
  • Yang Hee Joung


We investigated the fatigue, retention and switching properties of PLZT(x/30/70) thin films with various La concentrations. By applying 109 square pulse switching cycles with a voltage of ±5 V to study the fatigue properties of the film, we found that the decrease of the initial polarization is improved from 64% to 40% as the La concentration is increased from 0 mol% to 10 mol%. The retention properties are also greatly improved as the decrease of the initial polarization decrease is reduced from 47% to 9% after 105 s. The switching time is decreased from 0.8 μs to 0.55 μs as the La concentration is increased. While the dielectric constant of the PLZT thin films increases from 450 to 600 as the La concentration is increased, the dielectric loss and leakage current density measured at 100 kV/cm decrease from 0.075 to 0.025 and from 5.83 × 10−7 to 1.38 × 10−7 A/cm2, respectively. By analyzing the hysteresis loops of the PLZT thin film measured at 175 kV/cm, we found that the remnant polarization and coercive electric field decrease from 20.8 μC/cm2 to 10.5 μC/cm2 and from 54.48 kV/cm to 32.12 kV/cm, respectively, as the La concentration is increased.


Switching Time Leakage Current Density Remanent Polarization Retention Property Atomic Mobility 


  1. 1.
    Simoes AZ, Gonzalez AHM, Zaghete MA, Varela JA, Stojanovic BD (2001) Thin Solid Films 384:132CrossRefGoogle Scholar
  2. 2.
    Nakada M, Ohashi K, Akedo J (2005) J Crystal Growth 275:1275CrossRefGoogle Scholar
  3. 3.
    Tang XG, Ding AL, Ye Y, Chen WX (2003) Thin Solid Films 423:13CrossRefGoogle Scholar
  4. 4.
    Kim CJ, Kim TY, Chung I, Yoo IK (1999) In: Tuttle BA (ed) Materials research society symposium proceedings. Boston, p 399Google Scholar
  5. 5.
    Es-Souni M, Abed M, Piorra A, Malinowski S, Zaporojtchenko V (2001) Thin Solid Films 389:99CrossRefGoogle Scholar
  6. 6.
    Klee M, Eusemann R, Waser R (1992) J Appl Phys 72:1566CrossRefGoogle Scholar
  7. 7.
    Xu Y (1991) Ferroelectric materials and their applications, 1st edn. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Maiwa H, Inchinose N (1996) Jpn J Appl Phys 35:4976CrossRefGoogle Scholar
  9. 9.
    Kang SJ, Chang DH, Yoon YS (2000) Thin Solid Films 373:53CrossRefGoogle Scholar
  10. 10.
    Teowee G, Boulton JM, Baerteion CD, Wade RK, Uhlmann DR (1994) Integ Ferroelectrics 4:231CrossRefGoogle Scholar
  11. 11.
    Tagantsev AK, Stolichnov I, Colla EL, Setter N (2001) J Appl Phys 90:1387CrossRefGoogle Scholar
  12. 12.
    Dawber M, Scott JF (2000) Appl Phys Lett 76:1060CrossRefGoogle Scholar
  13. 13.
    Liu JM, Wang Y, Zhu C, Yuan GL, Zhang ST (2005) Appl Phys Lett 87:042904CrossRefGoogle Scholar
  14. 14.
    Raymond MV, Chen J, Smith DM (1994) Integ Ferroelectrics 5:73CrossRefGoogle Scholar
  15. 15.
    Tagantsev AK, Stolichnov I, Setter N, Cross JS (2004) J Appl Phys 96:6616CrossRefGoogle Scholar
  16. 16.
    Kang BS, Yoon JG, Kim DJ, Noh TW, Song TK, Lee YK, Lee JK, Park YS (2003) Appl Phys Lett 82:2124CrossRefGoogle Scholar
  17. 17.
    Fridkin VM (1980) Ferroelectric semiconductor, 1st edn. Consultants BureauGoogle Scholar
  18. 18.
    Aggarwal S, Prakash AS, Song TK (1998) Integ Ferroelectrics 19:159CrossRefGoogle Scholar
  19. 19.
    Chang DH, Yoon YS, Kang SJ (2001) J Kor Phys Soc 38:277Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical & Semiconductor EngineeringChonnam National UniversityYosuKorea
  2. 2.Department of Electrical & Semiconductor EngineeringChonnam National UniversityYosuKorea

Personalised recommendations