Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8101–8105 | Cite as

Adiabatic shear bands in α-titanium tube under external explosive loading

  • B. F. Wang
  • Y. Yang
  • Z. P. Chen
  • Y. Zeng
Article

Abstract

The radial pressure explosive experiment is successfully used to investigate the formation of adiabatic shear bands (ASBs) in α-titanium (α-Ti) tube under external explosive loading. The ASBs initiate at the inner surface of α-Ti tube, and most of the shear bands are in spiral form along the cross-section of the tube towards counterclockwise direction. Tip of a shear band propagates along the surface of the maximum shear stress. Four patterns of ASBs such as bifurcation, collection, crossing and N-shape are observed. The developed shear bands are the preferred sites for nucleation, growth and coalescence of microvoids. The nucleation of microvoid is caused by the local hot spots and stress concentration in the shear bands. The coalescence of microvoids forms the crack within ASBs, and when the critical crack length is reached catastrophic fracture occurs.

Keywords

Shear Band Maximum Shear Stress Copper Tube Adiabatic Shear Adiabatic Shear Band 

Notes

Acknowledgements

This work is supported by the Ph. D. Programs Foundation of Ministry of Education of China, No. 20020533015 and by National Nature Science Foundation of China, No. 50471059.

References

  1. 1.
    Meyers MA, Park HR (1986) Acta Metall 34:2493CrossRefGoogle Scholar
  2. 2.
    Yang Y, Zhang XM, Li ZH, Li QY (1996) Acta Mater 44:561CrossRefGoogle Scholar
  3. 3.
    Chichili DR, Ramesh KT, Hemker KJ (2004) J Mech Phys Solids 52:1889CrossRefGoogle Scholar
  4. 4.
    Pérez-Prado MT, Hines JA, Vecchio KS (2001) Acta Mater 49:2905CrossRefGoogle Scholar
  5. 5.
    Hoggatt C, Recht R (1968) J Appl Phys 39:1856CrossRefGoogle Scholar
  6. 6.
    Tang TG, Hu HB, Li QZ, Gu Y, Wang DS, Sun XL (2002) Explosion Shock Waves 22:333Google Scholar
  7. 7.
    Tang TG, Hu HB, Wang DS, Hu BY, Li QZ, Zhang CY (2002) Chin J High Pressure Phys 16:75Google Scholar
  8. 8.
    Nesterenko VF, Meyers MA, Wright TW (1995) In: Murr LE, Staudhammer KP, Meyers MA (eds) Metallurgical and materials applications of shock-wave and high-strain-rate phenomena. Elsevier Science, B.V., Amsterdam, p 397Google Scholar
  9. 9.
    Nesterenko VF, Meyers MA, Wright TW (1998) Acta Mater 46:327CrossRefGoogle Scholar
  10. 10.
    Meyers MA, Nesterenko VF, LaSalvia JC, Xue Q (2001) Mater Sci Eng A317:204CrossRefGoogle Scholar
  11. 11.
    Xue Q, Meyers MA, Nesterenko VF (2002) Acta Mater 50:575CrossRefGoogle Scholar
  12. 12.
    Xue Q, Meyers MA, Nesterenko VF (2004) Mater Sci Eng A384:35CrossRefGoogle Scholar
  13. 13.
    Timothy SP, Hutchings LM (1985) Acta Metall 33:667CrossRefGoogle Scholar
  14. 14.
    Timothy SP (1987) Acta Metall 35:301CrossRefGoogle Scholar
  15. 15.
    Guduru P, Rosakis AJ, Ravichandran G (2001) Mech Mater 33:371CrossRefGoogle Scholar
  16. 16.
    Li SF, Liu W-K, Qian D, Guduru PR, Rosakis AJ (2001) Comput Methods Appl Mech Eng 191:73CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang BF, Xiong J, Yang XY, Zeng Y, Chen ZP (2006) Metall Mater Trans A 37:3131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaP.R. China

Personalised recommendations