Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8139–8143 | Cite as

Influence of interstitial impurities on the valence electron structures and phase transformation behavior in intermediate Ti–Al alloys

  • Wen Zhi
  • Wen LiEmail author
  • Hani Gupta
Article

Abstract

Development of intermetallic compounds in Ti–Al alloys for high-temperature structural applications has long been impeded due to their embrittlement. To overcome the embritttlement, it is necessary to understand thoroughly its chemical bonding nature and the resultant phase transformation behavior. In this study, based on the Empirical Electron Theory of Solids and Molecules (EET), effects of interstitial impurities on the valence electron structures and phase transformations in the intermediate Ti–Al alloys were investigated. It was demonstrated that for such alloy systems, because interstitial impurities can enhance the hybridization states of Ti and Al atoms, the valence electron structures of various phases became considerably anisotropic. As a result, some phase transformations at high temperatures was hindered, leading to the occurrence of complex metastable phases at the room temperature. Such theoretical calculations clarified some unclear results from experimental observations in the literature.

Keywords

TiAl3 Interstitial Impurity Phase Transformation Behavior Valence Electron Structure Lattice Electron 

References

  1. 1.
    Taub AI, Fleischer RL (1989) Science 243:616CrossRefGoogle Scholar
  2. 2.
    Liu CT, Stringer J, Mundy JN, Horton LL, Angelini P (1997) Intermetallics 5:579CrossRefGoogle Scholar
  3. 3.
    McCullough C et al (1989) Acta Metall 37(5):1321CrossRefGoogle Scholar
  4. 4.
    Murray JL (1987) Binary titanium phase diagrams. Metal Park, Ohio, p 12Google Scholar
  5. 5.
    He LL et al (1994) Mater Lett 19(3):17CrossRefGoogle Scholar
  6. 6.
    Anderson CD et al (1993) Metal Trans A 24A:61CrossRefGoogle Scholar
  7. 7.
    Lu G, Kioussis N, Wu R, Ciftan M (1999) Phys Rev B 59:891CrossRefGoogle Scholar
  8. 8.
    Kioussis N, Herbranson M, Collins E, Eberhart M (2002) Phys Rev Lett 88:125501CrossRefGoogle Scholar
  9. 9.
    Fu CL, Wang XD, Ye YY, Ho KM (1999) Intermetallics 7:179CrossRefGoogle Scholar
  10. 10.
    Yu R (1978) Chin Sci Bull 23:217 (in Chinese)Google Scholar
  11. 11.
    Zhang R (1990) Empirical electron theory in solids and molecules. Jilin Science and Technology Publishing House, Changchun, China (in Chinese)Google Scholar
  12. 12.
    Guo Y, Yu R, Zhang R, Zhang X, Tao K (1998) J Phys Chem B102:9CrossRefGoogle Scholar
  13. 13.
    Li Z, Xu H, Gong S (2004) J Phys Chem B108:15165CrossRefGoogle Scholar
  14. 14.
    Liu Z, Li Z, Sun Z (1999) Metall Mater Trans 30A:2757CrossRefGoogle Scholar
  15. 15.
    Zheng Y, You M, Xiong WH (2004) J Am Ceramic Soc 87:460CrossRefGoogle Scholar
  16. 16.
    Li W (1995) PhD Dissertation. Jilin University, Changchun, p 19 (in Chinese)Google Scholar
  17. 17.
    Nakamura M et al (1993) J Mater Res 8(1):68CrossRefGoogle Scholar
  18. 18.
    Thomposon AW (1992) Mater Sci Eng A153:578CrossRefGoogle Scholar
  19. 19.
    Yang K et al (1993) Scr Metall Mater 28:71CrossRefGoogle Scholar
  20. 20.
    Carlson ON et al (1987) Bull Alloy Phase Diagrams 8(3):208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsChangchun UniversityChangchunP.R. China
  2. 2.Key Laboratory of Low Dimensional Materials and Application Technology (Ministry of Education)Xiangtan UniversityXiangtan, HunanChina
  3. 3.Faculty of Materials and Optoelectronic PhysicsXiangtan UniversityXiangtan, HunanChina
  4. 4.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations