Journal of Materials Science

, Volume 42, Issue 19, pp 8113–8119 | Cite as

Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications

  • Houde She
  • Xiufeng Xiao
  • Rongfang LiuEmail author


Highly porous scaffold plays an important role in bone tissue engineering, which becomes a promising alternative approach for bone repair since its emergence. The objective of this work was to blend poly (є-caprolactone) (PCL) with chitosan (CS) for the purpose of preparation of porous scaffold. A simple unique method was employed under room-temperature condition to blend the two components together without separation of two phases. The reaction leads to formation of sponge-like porous 5, 10, 15 and 20 wt% CS composites. XRD, IR and SEM were used to determine components and morphology of the composites. DSC studies indicated that the miscibility of the two components. And pore volume fractures of composites were determined by a simple method in which a pycnometer was used. The results show that CS is successfully commingled into PCL matrix, and adding CS into PCL will not damage the crystalline structure of PCL. The composite shows no signs of phase separation and presents a unique porous structure under SEM observation. The porosity of composite increased with the increase of the content of CS in the composite. The highest porosity reached to 92% when CS content increased to 20 wt%. The mechanism of formation of this unique porous structure is also discussed.


Foam Chitosan Porous Scaffold Physiology Salt Solution Composite Foam 



The authors would like to thanks National Nature Science Foundation of China (30600149), the science research foundation of ministry of Health & United Fujian Provincial Health and Education Project for Tackling the Key Research, P.R. China (WKJ 2005–2-008) and Fujian Development and Reform Commission of China (No. 2004[477]).


  1. 1.
    Langer R, Vacanti JP (1993) Science 260:920CrossRefGoogle Scholar
  2. 2.
    Tadic D, Epple M (2004) Biomaterials 25:987CrossRefGoogle Scholar
  3. 3.
    Agrawal CM, Ray RB (2001) J Biomed Mater Res 55:141CrossRefGoogle Scholar
  4. 4.
    Yoshikawa H, Myoui A (2005) J Artificial Organs 8:131CrossRefGoogle Scholar
  5. 5.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Med Engin Phys 20:92CrossRefGoogle Scholar
  6. 6.
    Long M, Rack HJ (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  7. 7.
    Barrere F, Layrolle P, van Blitterswijk CA, de Groot K (2001) J Mater Sci: Mater in Med 12:529Google Scholar
  8. 8.
    Nonami T, Tsutsumi S (1999) J Mater Sci: Mater in Med 10:475Google Scholar
  9. 9.
    Zhang Y, Zhang M (2002) J Biomed Mater Res 61:1CrossRefGoogle Scholar
  10. 10.
    Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H (2002) J Biomed Mater Res 59:110CrossRefGoogle Scholar
  11. 11.
    Tadic D, Beckmann F, Donath T, Epple M (2004) Materialwissenschaft und Werkstofftechnik 35:240CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Zhang M (2001) J Biomed Mater Res 55:304CrossRefGoogle Scholar
  13. 13.
    Hao J, Yuan M, Deng X (2002) J App Poly Sci 86:676CrossRefGoogle Scholar
  14. 14.
    Khor E, Lim LY (2003) Biomaterials 24:2339CrossRefGoogle Scholar
  15. 15.
    Liu X, Ma PX (2004) Ann Biomed Engin 32:477CrossRefGoogle Scholar
  16. 16.
    Sarasam A, Madihally SV (2005) Biomaterials 26:5500CrossRefGoogle Scholar
  17. 17.
    Nishi T, Wang TT (1975) Macromolecules 8:909CrossRefGoogle Scholar
  18. 18.
    Nishi T, Wang TT, Kwei TK (1975) Macromolecules 8:227CrossRefGoogle Scholar
  19. 19.
    Botchwey EA, Pollack SR, Levine EM, Laurencin CT (2001) J Biomed Mater Res 55:242CrossRefGoogle Scholar
  20. 20.
    Chauvel A, Grimaldi M, Tessier D (1991) Forest Ecol Manage 38:259CrossRefGoogle Scholar
  21. 21.
    Lu WW, Zhao F, Luk KDK, Yin YJ, Cheung KMC, Cheng GX, Yao KD, Leong JCY (2003) J Mater Sci: Mater in Med 14:1039Google Scholar
  22. 22.
    Shi GX, Wang SG, Bei JZ (2001) J Funct Poly 14:7Google Scholar
  23. 23.
    Wu CS (2005) Polymer 46:147CrossRefGoogle Scholar
  24. 24.
    Jiang TD (2001) Chitosan. Chemical Industry Press, Beijing pp 117Google Scholar
  25. 25.
    Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Reports on Progress in Physics 62:1573CrossRefGoogle Scholar
  26. 26.
    Tanaka H (1997) Phy Rev E 56:4451CrossRefGoogle Scholar
  27. 27.
    Tanaka H (2000) J Phys: Conden Matter 12:R202Google Scholar
  28. 28.
    Lin WJ, Lu CH (2002) J Memb Sci 198:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceFujian Normal UniversityFujianChina

Personalised recommendations