Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8093–8100 | Cite as

Influence of oxidized polyethylene wax (OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPE blends

  • Derval dos Santos Rosa
  • Flávia Gaboardi
  • Cristina das Graças Fassina Guedes
  • Maria Regina Calil
Article

Abstract

Blends of poly(β-hydroxybutyrate) (PHB) and low density polyethylene (LDPE) were prepared in proportions of 100/0, 75/25, 50/50, 27/75 and 0/100 (PHB/LDPE wt.%), with and without oxidized polyethylene wax (OPW, 5 wt.%), and the mechanical, thermal (differential scanning calorimetry and melting flow index, morphological (scanning electron microscopy) and biodegradation (aging in simulated soil) properties were evaluated. The addition of OPW increased the tensile strength and Young’s modulus but decreased the elongation at break of the blends. Similarly, OPW increased the Tg of the pure LDPE and enhanced the melt flow index. Scanning electron microscopy showed that OPW reduced the phase separation of LDPE and increased the biodegradation during aging in simulated soil.

Keywords

Tensile Strength Differential Scanning Calorimetry Biodegradation LDPE LLDPE 

Notes

Acknowledgements

The authors thank Braskem S.A., PHB Industrial S.A. and Megh Indústria e Comércio Ltda. for supplying the materials. This work was supported by CNPq (grant no. 304577/2004-9), FAPESP (grant no. 02/13202-6), CAPES and the Universidade São Francisco. The SEM work was done with the JSM-5900LV microscope in the Laboratório de Microscopia Eletrônica at the Laboratório Nacional de Luz Síncrotron (LME/LNLS), Campinas, SP, Brazil.

References

  1. 1.
    Moore CJ (ed) (2002) Out in the Pacific plastic is getting drastic: the world’s largest “landfill” is in the middle of the ocean. Algalita Marine Research Foundation, Long BeachGoogle Scholar
  2. 2.
    Gomez JGC, Netto CLB (2001) In: Biotecnologia Industrial: processos fermentativos e enzimáticos, vol 3. Edgard Blücher Ltda, São Paulo, p 219Google Scholar
  3. 3.
    Sudesh K, Abe H, Doi Y (2000) Progr Polym Sci 25:1503CrossRefGoogle Scholar
  4. 4.
    Reddy B, Ghai CSK, Rashmi R, Kalia VC (2003) Bioresour Technol 87:137CrossRefGoogle Scholar
  5. 5.
    Ol’khov AA, Iordanskii AL, Zaikov GE, Shibryaeva LS (2000) Polym Plast Techn Eng 39:783CrossRefGoogle Scholar
  6. 6.
    ASTM Designation 6400-04 (2004) Standard specifications for compostable plastics. Am Soc Test MatGoogle Scholar
  7. 7.
    Chiellini E, Solaro R (1996) Adv Mat 8:305CrossRefGoogle Scholar
  8. 8.
    Kounty GM, Lemaire J, Delort A-M (2006) Chemosph 64:1243CrossRefGoogle Scholar
  9. 9.
    Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y (2002) Polym Degrad Stab 76:129CrossRefGoogle Scholar
  10. 10.
    Weiland M, David C (1994) Polym Degrad Stab 45:371CrossRefGoogle Scholar
  11. 11.
    Chiellini E, Corti A, Swift G (2003) Polym Degrad Stab 81:341CrossRefGoogle Scholar
  12. 12.
    ASTM Designation D 638-99 (1999) Standard method for tensile properties of plastics. Am Soc Test MatGoogle Scholar
  13. 13.
    ASTM D 1238 Rev C (2004) Standard test method for melt flow rates of thermoplastics by extrusion plastometerGoogle Scholar
  14. 14.
    Quental AC, Felisberti MI (2006) J Appl Polym Sci 100:1255CrossRefGoogle Scholar
  15. 15.
    Pedroso AG, Rosa DS (2005) Carboh Polym 59:1CrossRefGoogle Scholar
  16. 16.
    El-Hadi A, Schnabel R, Straube E, Müller G, Riemschneider M (2002) Macrom Mat Eng 287:363CrossRefGoogle Scholar
  17. 17.
    Canevarollo SVJ (2004) Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. Artliber, São PauloGoogle Scholar
  18. 18.
    Rosa DS, Volponi JE, Guedes CGF (2006) J Appl Polym Sci 102:825CrossRefGoogle Scholar
  19. 19.
    Kim MN, Lee AR, Yoon JS, Chin AJ (2000) Eur Polym J 36:1677CrossRefGoogle Scholar
  20. 20.
    Rosa DS, Calil MR, Guedes CGF, Santos CEO (2002) J Polym Environ 9:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Derval dos Santos Rosa
    • 1
  • Flávia Gaboardi
    • 1
  • Cristina das Graças Fassina Guedes
    • 1
  • Maria Regina Calil
    • 1
  1. 1.Programa de Pós-Graduação Stricto Sensu em Engenharia e Ciência dos Materiais, Laboratório de Polímeros Biodegradáveis e Soluções AmbientaisUniversidade São FranciscoItatibaBrazil

Personalised recommendations