Journal of Materials Science

, Volume 42, Issue 18, pp 7690–7695 | Cite as

Kinematical studies on rotation-based semi-auxetics

  • Teik-Cheng LimEmail author


Auxetic materials are those which exhibit negative Poisson’s ratio, i.e. these solids expand transversely when stretched longitudinally. In recent years the concept of semi-auxetics has been examined for cellular solids based on combination of re-entrant and hexagonal microstructures. In this paper we identify a type of rotating unit that gives positive Poisson’s ratio so that a study can be made on rotating sub-structures that exhibit both positive and negative Poisson’s ratio characteristics. A second type of rotating geometry, whose Poisson’s ratio shifts from negative to positive as stretching increases, has also been identified. Based on kinematical studies we explore the relationship between the on-axis Poisson’s ratios in terms of novel lattice geometry and the magnitude of deformation.


Virtual Link Geometrical Assumption Projected Length Kinematical Assumption Conventional Behavior 


  1. 1.
    Lakes R (1987) Science 235:1038CrossRefGoogle Scholar
  2. 2.
    Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC (1991) Nature 353:124CrossRefGoogle Scholar
  3. 3.
    Baughman RH, Shacklette JM, Zhakhidov AA, Stafstrom S (1998) Nature 392:362CrossRefGoogle Scholar
  4. 4.
    Yeganeh-Haeri Y, Weidner DJ, Parise JB (1992) Science 257:650CrossRefGoogle Scholar
  5. 5.
    Grima JN, Evans KE (2000) J Mater Sci Lett 19:1563CrossRefGoogle Scholar
  6. 6.
    Grima JN, Jackson R, Alderson A, Evans KE (2000) Adv Mater 12:1912CrossRefGoogle Scholar
  7. 7.
    Choi JB, Lakes R (1995) Int J Mech Sci 37:51CrossRefGoogle Scholar
  8. 8.
    Alderson KL, Evans KE (1993) J Mater Sci 28:4092CrossRefGoogle Scholar
  9. 9.
    Alderson A, Evans KE (1997) J Mater Sci 32:2797CrossRefGoogle Scholar
  10. 10.
    Lu XH, He CB, Terrell CD, Griffin AC (2002) Macromol Chem Phys 203:85CrossRefGoogle Scholar
  11. 11.
    He CB, Liu PW, Griffin AC, Smith CW, Evans KE (2005) Macromol Chem Phys 206:233CrossRefGoogle Scholar
  12. 12.
    Lu XH, He CB, Liu PW, Griffin AC (2005) J Polym Sci Part A: Polym Chem 43:3394CrossRefGoogle Scholar
  13. 13.
    Alderson A, Davies PJ, Evans KE, Alderson KL, Grima JN (2005) Mol Simul 31:889CrossRefGoogle Scholar
  14. 14.
    Lim TC (2002) J Mater Sci Lett 21:1595CrossRefGoogle Scholar
  15. 15.
    Lim TC (2002) J Mater Sci Lett 21:1899CrossRefGoogle Scholar
  16. 16.
    Lim TC (2003) J Mater Sci Lett 22:1783CrossRefGoogle Scholar
  17. 17.
    Lim TC (2004) J Mater Sci 39:4965CrossRefGoogle Scholar
  18. 18.
    Lim TC (2005) J Mater Sci 40:3275CrossRefGoogle Scholar
  19. 19.
    Grima JN (2005) In: Proceedings of the 2nd workshop on auxetics and related systems, PoznanGoogle Scholar
  20. 20.
    Grima JN (2000) PhD Thesis, Exeter UniversityGoogle Scholar
  21. 21.
    Vasiliev AA, Dmitriev SV, Ishibashi Y, Shigenari T (2002) Phys Rev B 65:094101CrossRefGoogle Scholar
  22. 22.
    Ishibashi Y, Iwata M (2000) J Phys Soc Jpn 69:2702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Science and TechnologySIM University (UniSIM)SingaporeRepublic of Singapore

Personalised recommendations