Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4125–4130 | Cite as

A novel method for massive fabrication of β-SiC nanowires

  • F. Li
  • G. WenEmail author
Article

Abstract

Silicon carbide nanowires (NWs), that were over 200 μm in length and 20–200 nm in diameter, were prepared by high-pressure reaction from SiBONC powder tablets. Annealing temperatures between 1,500 °C and 1,600 °C and Si/B molar ratios between 70:30 and 60:40 were suitable for the growth of the nanowires. The nanowires were fabricated by in situ chemical vapor growth process on the tablets. The SiC nanowires were identified as single crystal β-SiC. The analysis of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed the single crystalline nature of nanowires with a growth direction of <111>. Massive growth of single crystalline SiC nanowires is important to meet the requirements of the fabrication of SiC nanowire-based nanodevices.

Keywords

Select Area Electronic Diffraction Pattern Zinc Blend Powder Tablet Graphite Cylinder Boron Trichloride 

Notes

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China, No. 50472011.

References

  1. 1.
    Wong WW, Sheenhan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  2. 2.
    Tang CC, Bando Y, Sato T, Kurashima K (2002) Appl Phys Lett 80:4641CrossRefGoogle Scholar
  3. 3.
    Han WQ, Fan SS, Li QQ, Hu YD (1997) Science 277:1287CrossRefGoogle Scholar
  4. 4.
    Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Nature 375:769CrossRefGoogle Scholar
  5. 5.
    Zhang YF, Tang H, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835CrossRefGoogle Scholar
  6. 6.
    Zhou XT, Wang N, Lai HL, Peng HY, Bello I, Wong NB, Lee CS, Lee ST (1999) Appl Phys Lett 74:3942CrossRefGoogle Scholar
  7. 7.
    Salama IA, Quick NR, Kar A (2003) J Appl Phys 93:9275CrossRefGoogle Scholar
  8. 8.
    Bazhenov AV, Brantov SK, Kolchin AA, Kuznetzov NN, Zverev VN (2004) Comp Sci Tech 64:1203CrossRefGoogle Scholar
  9. 9.
    Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2002) Science 292:1897CrossRefGoogle Scholar
  10. 10.
    Zhong Z, Qian F, Wang D, Lieber CM (2003) Nano Lett 3:343CrossRefGoogle Scholar
  11. 11.
    Tu LW, Hsiao TW, Lo I, Hsieh KY (2003) Appl Phys Lett 82:1601CrossRefGoogle Scholar
  12. 12.
    Vyshnyakova KL, Pereselentseva LN (2004) Brit Ceram Trans 5:193CrossRefGoogle Scholar
  13. 13.
    Givargizov EI (1979) In: Chernov AA (ed) Growth of crystals, vol 11, Translated by J.E.S. Bradley. Consultants Bureau, New York, p 136Google Scholar
  14. 14.
    Seeger T, Kohler-Redlich P, Ruhle M (2000) Adv Mater 12:279CrossRefGoogle Scholar
  15. 15.
    Deng SZ, Wu ZS, Zhou J, Xu NS, Chen J, Chen J (2002) Chem Phys Lett 356:511CrossRefGoogle Scholar
  16. 16.
    McMahon G, Carpenter GJC, Malis TF (1991) J Mater Sci 26:5655, DOI: 10.1007/BF02403970CrossRefGoogle Scholar
  17. 17.
    Pirouz P, Yang J (1993) Ultramicroscopy 51:189CrossRefGoogle Scholar
  18. 18.
    Wang L, Wada H, Allard LF (1992) J Mater Res 7:148CrossRefGoogle Scholar
  19. 19.
    Inagaki M, Kaneko K (2004) Carbon 42:1401CrossRefGoogle Scholar
  20. 20.
    Honda S-I, Baek Y-G (2003) Appl Surf Sci 212:378CrossRefGoogle Scholar
  21. 21.
    Liu JW, Zhong DY, Xie FQ, Sun M, Wang EG, Liu WX (2001) Chem Phy Lett 348:357CrossRefGoogle Scholar
  22. 22.
    Vix-Guterl C, Alix I, Ehrburger P (2004) Acta Mater 52:1639CrossRefGoogle Scholar
  23. 23.
    Zheng XJ, Rapp RA (1998) Mater Sci Eng 255:75CrossRefGoogle Scholar
  24. 24.
    Nhut J, Vieira R, Pesant L (2002) Catal Today 76:11CrossRefGoogle Scholar
  25. 25.
    Havela M, Colombana Ph (2004) Compo B 35:139CrossRefGoogle Scholar
  26. 26.
    Bunsell AR, Berger MH (2000) J Euro Ceram Soc 20:2249CrossRefGoogle Scholar
  27. 27.
    Zhu YQ, Kroto HW, Walton RM, Lange H, Huczko A (2002) Chem Phy Lett 365:457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Harbin Institute of Technology, School of Materials Science & EngineeringHarbinChina
  2. 2.Harbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations