Journal of Materials Science

, Volume 42, Issue 19, pp 8053–8061 | Cite as

Interfacial stress transfer in an aramid reinforced thermoplastic elastomer

  • A. B. Coffey
  • C. M. O’Bradaigh
  • R. J. YoungEmail author
Polymer Fibres 2006


The interfacial micromechanics of Twaron 2200 aramid fibers in an engineering thermoplastic elastomer (Pebax 7033, polyether amide block co-polymer) has been investigated by determining the distribution of interfacial shear stress along fibers in single-fiber model composites using Raman spectroscopy. The effects of various fiber surface treatments on the interfacial shear stress and fragmentation of the aramid fibers are discussed. The fiber average stress increased linearly with applied matrix stress up to first fracture. Each composite was subjected to incremental tensile loading up to full fragmentation, while the stress in the fiber was monitored at each level of the applied stress. It was shown that the experimental approach allowed us to discriminate between the strengths of the interfaces in the different surface-treated aramid fiber Pebax matrix systems, but also to detect different phenomena (interfacial debonding, matrix yielding and fiber fracture) related intimately to the nature of stress transfer in composite materials. The efficacy of the surface treatments was clear by comparing the maximum interfacial shear stress with the fragment lengths of the modified aramid fibers. The fiber breaks observed using Raman spectroscopy were not clean breaks as observed with carbon or glass fibers, but manifested themselves as apparent breaks by fiber skin failure. The regions of fiber fracture were also investigated using optical microscopy.


Stress Transfer Interfacial Shear Stress Fiber Break Aramid Fiber Thermoplastic Elastomer 



The authors wish to thank the Marie Curie Fellowship Scheme who funded this work.


  1. 1.
    Coffey AB, Brazier A, Tierney M, Gately AG, O’Bradaigh CM (2003) Comp Part A 34:535CrossRefGoogle Scholar
  2. 2.
    Rallis G, Tarantili PA, Andreopoulos G (2000) Adv Comp Letters 9:127Google Scholar
  3. 3.
    Huang Y, Young RJ (1994) Comp Sci Tech 52:505CrossRefGoogle Scholar
  4. 4.
    Gu XH, Young RJ, Day RJ (1995) J Mater Sci 30:1409CrossRefGoogle Scholar
  5. 5.
    Penn L, Bystry F, Karp W, Lee S (1985) In: Ishida H, Kumar G (eds) Molecular characterisation of composite interfaces. Plenum Press, New York, p 93Google Scholar
  6. 6.
    Young RJ (1995) J Text Inst 86:360CrossRefGoogle Scholar
  7. 7.
    Eichhorn SJ, Young RJ (2004) Comp Sci Tech 64:767CrossRefGoogle Scholar
  8. 8.
    Ciba-Geigy, UK – LY5052 and HY5052, Data sheetGoogle Scholar
  9. 9.
    Andreopoulos AG (1989) J Appl Polym Sci 38:1053CrossRefGoogle Scholar
  10. 10.
    Montes S, Personal Communication, Kenrich Petrochemicals Inc., USAGoogle Scholar
  11. 11.
    Kupper K, Schwartz P (1991) J Adh Sci Tech 5:16CrossRefGoogle Scholar
  12. 12.
    Brown JR, Chappell PJC, Pitt WG, Lakenan JE, Strong AB (1993) J Appl Polym Sci 48:845CrossRefGoogle Scholar
  13. 13.
    Yang HH (1993) Kevlar Aramid Fiber, EI du Pont de Nemours & Co., J. Wiley & Sons, NYGoogle Scholar
  14. 14.
    Brown JR, Browne NM, Burchill PJ, Egglestone GT (1983) J Text Res 53:214CrossRefGoogle Scholar
  15. 15.
    Kim PK, Chang C, Hsu SL (1986) Polymer 27:34CrossRefGoogle Scholar
  16. 16.
    Cox HL (1952) Br J Appl Phys 3:72CrossRefGoogle Scholar
  17. 17.
    Kelly A, Tyson WR (1965) J Mech Phys Solids 13:329CrossRefGoogle Scholar
  18. 18.
    Young RJ, Thongpin C, Stanford JL, Lovell PA (2001) Comp Part A 32:253CrossRefGoogle Scholar
  19. 19.
    Kelly A, Macmillan NH (1986) Strong solids, 3rd edn. Oxford University PressGoogle Scholar
  20. 20.
    Bannister DJ (1996) Ph.D. Thesis, Victoria University of ManchesterGoogle Scholar
  21. 21.
    Tripathi D, Jones FR (1998) J Mater Sci 33:1CrossRefGoogle Scholar
  22. 22.
    Drzal LT (1983) 15th Nat. SAMPE Tech. Conf., Azusa, Calif. 15:190Google Scholar
  23. 23.
    Pisanova E, Zhandrov SF, Dovgyalo VA (1992) Euradh ‘92 Conf. Proc. pp 232–237Google Scholar
  24. 24.
    Gu XH, Young RJ, Day RJ (1995) J Mater Sci 30:1409CrossRefGoogle Scholar
  25. 25.
    Huang Y, Young RJ (1995) Composites 26:541CrossRefGoogle Scholar
  26. 26.
    Melanitis N, Galiotis C (1993) Proc Royal Soc London A 440A:379CrossRefGoogle Scholar
  27. 27.
    Jayaraman K, Reifsnider KL, Swain RE (1993) J Compos Technol Res 15:3CrossRefGoogle Scholar
  28. 28.
    Williams JG, Donnellan ME, James MR, Morris WL (1990) Mat Res Soc Symp Proc 170:285CrossRefGoogle Scholar
  29. 29.
    Herrera-Franco PJ, Drzal LT (1992) Composites 23:2CrossRefGoogle Scholar
  30. 30.
    Wagner HD, Amer MS, Schadler LS (1996) J Mater Sci 31:1165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. B. Coffey
    • 1
    • 2
  • C. M. O’Bradaigh
    • 2
  • R. J. Young
    • 1
    Email author
  1. 1.Materials Science Centre, School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Composite Research UnitNational University of IrelandGalwayIreland

Personalised recommendations