Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8120–8125 | Cite as

A new approach for estimation of Poisson’s ratio of porous powder compacts

  • Kalyan Kumar PhaniEmail author
  • Dipayan Sanyal
Article

Abstract

A new correlation between Poisson’s ratio (ν) and ultrasonic longitudinal wave velocity (VL) has been established and the resulting correlation has been shown to agree well with experimental data on ν versus VL for a variety of porous powder compacts. Further, it has been demonstrated that ultrasonic longitudinal wave velocity can be used to estimate the elastic properties of sintered powder compacts.

Keywords

Powder Compact Bulk Modulus Shear Wave Velocity Uranium Dioxide Sintered Powder Compact 

Notes

Acknowledgements

The authors are thankful to the Director, CG&CRI for his permission to publish this work.

References

  1. 1.
    Hashin Z, Shtrikman S (1961) J Franklin Inst 271:3361Google Scholar
  2. 2.
    Dean EA (1983) J Amer Ceram Soc 66:847CrossRefGoogle Scholar
  3. 3.
    Nielsen LF (1984) J Amer Ceram Soc 67:93CrossRefGoogle Scholar
  4. 4.
    Zimmerman RW (1992) Mech Res Comm 19:563CrossRefGoogle Scholar
  5. 5.
    Phani KK (1996) J Mater Sci 31:272CrossRefGoogle Scholar
  6. 6.
    Rice RW (1998) Porosity in ceramics. Marcel Dekker Inc, New YorkGoogle Scholar
  7. 7.
    Dunn ML, Ledbetter H (1995) J Mater Res 10:2715CrossRefGoogle Scholar
  8. 8.
    Wang JC (1984) J Mater Sci 19:801CrossRefGoogle Scholar
  9. 9.
    Ramakrishna N, Arunachalam VS (1990) J Mater Sci 25:3930CrossRefGoogle Scholar
  10. 10.
    Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci 31:1643CrossRefGoogle Scholar
  11. 11.
    Phani KK, Sanyal D (2005) J Mater Sci 40:5685CrossRefGoogle Scholar
  12. 12.
    Ashkin D, Haber RA, Wachtman JB (1990) J Am Ceram Soc 73:3376CrossRefGoogle Scholar
  13. 13.
    Walsh JB, Brace WF, England AW (1965) J Am Ceram Soc 48:605CrossRefGoogle Scholar
  14. 14.
    Gatt J-M, Monerie Y, Laux D, Baron D (2005) J Nuclear Mater 336:145CrossRefGoogle Scholar
  15. 15.
    Roque V, Cros B, Baron D, Dehaudt P (2000) J Nuclear Mater 277:211CrossRefGoogle Scholar
  16. 16.
    Phani KK, Niyogi SK (1986) J Mater Sci Lett 5:427CrossRefGoogle Scholar
  17. 17.
    Maitra AK, Phani KK (1994) J Mater Sci 29:4415CrossRefGoogle Scholar
  18. 18.
    Martin LP, Dadon D, Rosen M (1996) J Am Ceram Soc 79:1281CrossRefGoogle Scholar
  19. 19.
    Wachtman JB,Wheat ML,Anderson HJ, Bates JL (1965) J Nuclear Mater 16:39CrossRefGoogle Scholar
  20. 20.
    Spitzig WA, Thompson RB, Jules DC (1989) Metal Trans 20A:571CrossRefGoogle Scholar
  21. 21.
    Panakkal JP (1991) IEEE Trans Ferroelec Freq Control 38:161CrossRefGoogle Scholar
  22. 22.
    Panakkal JP, Willems H, Arnold W (1990) J Mater Sci 25:1397CrossRefGoogle Scholar
  23. 23.
    Yeheskel O (2004) J Testing Eval 32:17Google Scholar
  24. 24.
    Beiss P, Sander C (1998) in Proceedings of the International Congress on Powder Technology, Granada, Spain, 2:552Google Scholar
  25. 25.
    Nagarajan A (1971) J App Physics 42:3693CrossRefGoogle Scholar
  26. 26.
    Padel A, Novion CD (1969) J Nucl Mater 33:40CrossRefGoogle Scholar
  27. 27.
    Asmani M, Kermel C, Leriche A, Ourak M (2001) J Euro Ceram Soc 21:1081CrossRefGoogle Scholar
  28. 28.
    Chang LS, Chuang TH, Wei WJ (2000) Mater Character 45:221CrossRefGoogle Scholar
  29. 29.
    Green DJ, Nader C, Brezny R (1990) Ceram Trans 7:345Google Scholar
  30. 30.
    Yeheskel O, Shokhat M, Ratzker M, Dariel MP (2001) J Mater Sci 36:1219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations