Journal of Materials Science

, Volume 42, Issue 18, pp 7702–7707 | Cite as

Experimental and numerical investigation on ductile-brittle fracture transition in a magnesium alloy

  • C. YanEmail author
  • W. Ma
  • V. Burg
  • M. W. Chen


Tensile test on smooth and circumferentially notched specimens, systematic observation of fracture surfaces and large deformation finite element analysis were conducted to understand the deformation and failure behavior of a magnesium alloy (AM60). The plastic deformation is considered to be dominated by twining mediated slip. The tensile properties were not sensitive to the strain rates applied (3.3 × 10−4∼0.1). Corresponding to the same loading level, higher stress triaxiality but lower plastic strain was observed in the specimens with a smaller notch profile radius. Deformation and failure of the magnesium alloy were sensitive to the constraint level and ductile-brittle fracture transition occurred with decreasing the notch profile radius.


Magnesium Alloy Brittle Fracture Stress Triaxiality Notch Root Constraint Level 



C. Yan wishes to acknowledge the support of an ARC Discovery Project and a Sydney University Sesqui R & D grant.


  1. 1.
    Lu L, Raviprasad K, Lai MO (2004) Mater Sci Eng A368:117CrossRefGoogle Scholar
  2. 2.
    Singh A, Watanabe M, Kato A, Tsai AP (2004) Scripta Mater 51:955CrossRefGoogle Scholar
  3. 3.
    Kim HK, Lee YI, Chung CS (2005) Scripta Mater 52:473CrossRefGoogle Scholar
  4. 4.
    Cotterell B, Li QF, Zhang DZ, Mai Y-W (1985) Eng Fract Mech 21:239CrossRefGoogle Scholar
  5. 5.
    Matsoukas G, Cotterell B, Mai Y-W (1986) Eng Fract Mech 23:661CrossRefGoogle Scholar
  6. 6.
    Wu SX, Mai Y-W, Cotterell B, Lee CV (1991) Acta Metall Mater 39:2527CrossRefGoogle Scholar
  7. 7.
    Yan C, Mai Y-W (1998) Int J Fract 92:287CrossRefGoogle Scholar
  8. 8.
    Knott JF (1973) Fundamentals of fracture mechanics. Butterworths, LondonGoogle Scholar
  9. 9.
    Atkins AG, Mai Y-W (1985) Elastic and plastic fracture. John Wiley/Ellis Horwood, ChichesterGoogle Scholar
  10. 10.
    Yan C, Y-W Mai (2000) Int J Press Vessels Piping 77:313CrossRefGoogle Scholar
  11. 11.
    Yan C, Mai Y-W, Wu SX (1997) Int J Fract 87:345CrossRefGoogle Scholar
  12. 12.
    Gartnerova V, Trojanova Z, Jager A, Palcek P (2004) J Alloys Compd 378:180CrossRefGoogle Scholar
  13. 13.
    Zhang P, Watzinger B, Kong PQ, Blum W (2000) Key Eng Mater 17–174:609Google Scholar
  14. 14.
    Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scripta Mater 54:1175CrossRefGoogle Scholar
  15. 15.
    Hancock JW, Mackenzie AC (1976) J Mech Phys Solids 24:147CrossRefGoogle Scholar
  16. 16.
    Ritchie RO, Knott JF, Rice JR (1973) J Mech Phys Solids 21:395CrossRefGoogle Scholar
  17. 17.
    Yan C, Chen JH, Sun J, Wang Z (1993) Metall Trans 24A:1381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Engineering SystemsQueensland University of TechnologyBrisbaneAustralia
  2. 2.Centre for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, J07The University of SydneySydneyAustralia
  3. 3.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations