Journal of Materials Science

, Volume 42, Issue 19, pp 8262–8270 | Cite as

Impact modification of SAN using NR-g-SAN copolymers

  • Benny GeorgeEmail author
  • S. N. Maiti
  • I. K. Varma


The paper demonstrates the efficacy of natural rubber-g-poly (styrene-co-acrylonitrile) (NR-g-SAN) copolymers as impact modifier for SAN. The impact behaviour of SAN /NR-g-SAN blends were studied as a function of cross-link density of NR, percent grafting, rubber content in the blend and the AN content in the grafted chain. The cross-link density of NR had no significant effect on impact strength of the blends whereas increase in percent grafting (PG) of the rubber significantly improved the impact strength. Thus the impact strength increased four times when the PG of the rubber was increased from 34.2 to 65%. Further increase in PG decreased the impact strength. Similar trend was observed on increase in the rubber content, the maximum impact strength was observed at 20% rubber. The impact strength also depended on the acrylonitrile content of the grafted chain. Tensile and flexural strength and modulus of these blends were not influenced by PG and AN content in the grafted chain whereas these properties decreased with the increase in the rubber content. Scanning electron microscopic studies of the impact fractured surfaces showed cavitation of rubber particles and craze induced matrix deformation. Dynamic mechanical studies confirmed the two-phase structure of these blends.


Impact Strength Natural Rubber Graft Copolymer Rubber Particle Natural Rubber Latex 


  1. 1.
    Utracki LA (1998) In: Commercial polymer blends, Chap.10. Chapman and Hall, LondonGoogle Scholar
  2. 2.
    Keskkula H, Paul DR (1994) In: Collyer AA (ed) Rubber toughened engineering plastics. Chapman and Hall, London, p 146Google Scholar
  3. 3.
    Echte A, (1989) In: Riew CK (ed), Advances in chemistry series, 222. ACS, Washington D. C. p 17Google Scholar
  4. 4.
    Chauvel B, Daniel JC (1975) In: Platzer NAJ (ed) Advances in chemistry series, 142. ACS, Washington DC, p 159Google Scholar
  5. 5.
    Kidder KR (1993) (to General Electric) Eu Pat 564240Google Scholar
  6. 6.
    Ishiga N (1993) (to Mitsubishi Monsanto Chemical Company) US 5225494Google Scholar
  7. 7.
    Leng PB, Shields N, Hentone DE (1991) (to Dow Chemical company) US 5041498Google Scholar
  8. 8.
    Bubeck RA, Clipper RB, Hentone DE (1989) (to Dow Chemical company) US 4874815Google Scholar
  9. 9.
    Morbitzer L, Kranz D, Humme G, Ott KH (1976) J Appl Polym Sci 20:2691CrossRefGoogle Scholar
  10. 10.
    Kranz D, Morbitzer L, Oh KH, Casper R (1977) Angew Makromol Chem 58/59:213CrossRefGoogle Scholar
  11. 11.
    Ricco T, Pavan A, Danusso F (1975) Polymer 16:685CrossRefGoogle Scholar
  12. 12.
    Rink M, Ricco T, Lubert W, Pavan A (1978) J Appl Polym Sci 22:429CrossRefGoogle Scholar
  13. 13.
    Kim H, Keskkula H, Paul DR (1990) Polym Eng Sci 30:1373CrossRefGoogle Scholar
  14. 14.
    Kim H, Keskkula H, Paul DR (1990) Polymer 31:869CrossRefGoogle Scholar
  15. 15.
    Kim H, Keskkula H, Paul DR (1991) Polymer 32:1447CrossRefGoogle Scholar
  16. 16.
    Okaniwa M, Suzuki M. (2001) J Appl Polym Sci 81:3462CrossRefGoogle Scholar
  17. 17.
    Keskkula H, Turly SG (1978) Polymer 19:797CrossRefGoogle Scholar
  18. 18.
    Tangboriboonrat P, Tiyapiboonchaiya CJ (1999) J Appl Polym Sci 71:1333CrossRefGoogle Scholar
  19. 19.
    Schneider M, Pith T, Lambla M (1996) Polym Adv Technol 7:425CrossRefGoogle Scholar
  20. 20.
    Schneider M, Pith T, Lambla M (1996) Polym Adv Technol 7:577CrossRefGoogle Scholar
  21. 21.
    Schneider M, Pith T, Lambla M (1997) J Mater Sci 32:5191CrossRefGoogle Scholar
  22. 22.
    George B (June 2002) In: Studies on grafting of natural rubber and its blends with poly (styrene-co-acrylonitrile). Ph.D thesis submitted to Indian Institute of Technology, Delhi p.42Google Scholar
  23. 23.
    George B, Maiti SN, Varma IK (2006) J Elastomers and Plastics 38:319CrossRefGoogle Scholar
  24. 24.
    Walker I, Collyer AA (1994) In: Collyer AA (ed) Rubber toughened engineering plastics, Chapman and Hall, London, p 38Google Scholar
  25. 25.
    Steenberg AC, Litvinov VM, Gaymans RJ (1998) Polymer 39:4817CrossRefGoogle Scholar
  26. 26.
    Makuuchi K, Hagiwara M (1984) J App Polym Sci 29:965CrossRefGoogle Scholar
  27. 27.
    Makuuchi K, Hagiwara M, Serizawa T (1984) Radiation Phy Chem 24:203Google Scholar
  28. 28.
    Mendelson RA (1985) J Polym Sci Polym Phy Edn 23:1975CrossRefGoogle Scholar
  29. 29.
    Bucknell CB, Cote FF, Partridge IK (1986) J Mater Sci 21:301CrossRefGoogle Scholar
  30. 30.
    Cho K, Yang J, Park CE (1998) Polymer 39:3073CrossRefGoogle Scholar
  31. 31.
    Donald AM, Kramer EJ (1982) J Mater Sci 17:1765CrossRefGoogle Scholar
  32. 32.
    Bohn L (1975) In: Platzer NAJ (eds), Advances in chemistry series, 142. Chap. 6. ACS, Washington DCGoogle Scholar
  33. 33.
    Murayama T, Lawton EL (1973) J App Polym Sci 17:669CrossRefGoogle Scholar
  34. 34.
    Chua PS (1987) Polymer composites 8:308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Rubber Research Institute of IndiaKottayamIndia
  2. 2.Centre for Polymer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations