Journal of Materials Science

, Volume 42, Issue 18, pp 7872–7881 | Cite as

Experimental evaluation of the double torsion analysis on soda-lime glass

  • M. A. MadjoubiEmail author
  • M. Hamidouche
  • N. Bouaouadja
  • J. Chevalier
  • G. Fantozzi


According to the classical model developed by Evans and co-workers on the double torsion test [(1972) J Mater Sci 7:1137 and (1973) J Testing Eval 1:264], the stress intensity factor is independent of the crack length. Recent applications and analysis question this independency (Chevalier et al (1996) Cer Inter 22:171, Ciccotti et al (2000) Inter J Rock Mech Min Sci 37:1103). This work consists of using samples with different lengths of a typical brittle material (a soda-lime glass) in order to discuss on the validity of the different equations proposed to analyse the DT technique. Experimental compliance tests always showed linear variations with crack length. Successive relaxation tests revealed, however, a clear dependency of the stress intensity factor on crack length. This dependency, observed through the non reproducibility of the V−KI diagrams, is reduced as the sample length increases. The corrections proposed by Chevalier and Ciccotti on Evans model revealed that their applications remain limited to the sample and the loading configurations used by the authors. The application of Evans model without correction is conditioned by the use of sufficiently long samples and advanced crack lengths.


Stress Intensity Factor Crack Length Relaxation Test Double Cantilever Beam Tensile Side 


  1. 1.
    Freiman SW, Mulville DR, Mast PW (1973) J Mater Sci 8:1527CrossRefGoogle Scholar
  2. 2.
    Gonzalez AC, Pantano CG (1990) J Am Ceram Soc 73:2534CrossRefGoogle Scholar
  3. 3.
    Janssen C, (1980) Fracture characteristics of double cantilever drilled compression Specimen, Report No R-8047. Corning Glass Works, Corning NHGoogle Scholar
  4. 4.
    Outwater JO, Gerry DJ (1966) On the Fracture Energy of Glass, NRL Interim Contract Report, Contract NONR 3219 (01), AD 640848, University of Vermont, Burlington, Vt, AugGoogle Scholar
  5. 5.
    Evans AG, (1972) J Mater Sci 7:1137CrossRefGoogle Scholar
  6. 6.
    Williams DP, Evans AG, (1973) J Testing Evaluation 11:264Google Scholar
  7. 7.
    Fuller ER Jr (1979) In: Freiman SW (ed) Astm Stp 678. American Society for Testing and Materials, p 3Google Scholar
  8. 8.
    Timoshenko SP (1951) In: Goodier JN (ed) Theory of elasticity. Mc Graw Hill, New YorkGoogle Scholar
  9. 9.
    Pollet JC, Burns SJ (1979) J Am Ceram Soc 62:62CrossRefGoogle Scholar
  10. 10.
    Shetty DK, Virkar AV, Hardward MB, (1979) J Am Ceram Soc 62:307CrossRefGoogle Scholar
  11. 11.
    Pletka BJ, Fuller ER Jr, Koepke BG (1979) In: Freiman SW (ed) Astm Stp 678. American Society for Testing and Materials, p 18Google Scholar
  12. 12.
    Evans AG, Wiederhorn SM (1974) Int J Fract 10:379CrossRefGoogle Scholar
  13. 13.
    Trantina GC (1973) J Am Ceram Soc 60:338CrossRefGoogle Scholar
  14. 14.
    Shetty DK, Virkar AV (1978) J Am Ceram Soc 61:93CrossRefGoogle Scholar
  15. 15.
    Chevalier J, Saadaoui M, Olagnon C, Fantozzi G (1996) Ceram Int 22:171CrossRefGoogle Scholar
  16. 16.
    Ciccotti M (2000) J Am Ceram Soc 83:2737CrossRefGoogle Scholar
  17. 17.
    Ciccotti M, Gonzalo G, Mulargia F (2000) Int J Rock Mech Min Sci 37:1103CrossRefGoogle Scholar
  18. 18.
    Ciccotti M, Negri N, Gonzalo G, Mulargia F (2001) Int J Rock Mech Min Sci 38:569CrossRefGoogle Scholar
  19. 19.
    Wiederhorn SM (1967) J Am Ceram Soc 50:407CrossRefGoogle Scholar
  20. 20.
    Wiederhorn SM, Boltz LH (1970) J Am Ceram Soc 53:543CrossRefGoogle Scholar
  21. 21.
    Lawn BR (1993) In: The fracture of Brittle Solids, 2nd edn. Cambridge University PressGoogle Scholar
  22. 22.
    Sglavo VM, Green DJ (1999) J Mater Sci 34:579CrossRefGoogle Scholar
  23. 23.
    Annis CG, Cargill JS (1978) In: Bradt RC, Hasselmann DPH, Lange FF (eds) Fracture Mechanics of ceramics, vol 4. Plenum Press, New York, p 737Google Scholar
  24. 24.
    Chevalier J (1996) Thèse de Doctorat, Etude de la propagation des fissures dans une zircone 3Y-TZP pour applications médicales, INSAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. A. Madjoubi
    • 1
    Email author
  • M. Hamidouche
    • 1
  • N. Bouaouadja
    • 1
  • J. Chevalier
    • 2
  • G. Fantozzi
    • 2
  1. 1.Laboratoire des Matériaux Non Métalliques, Dpt. OMP, Faculté des Sciences de l’IngénieurUniversité Farhat AbbasSétifAlgérie
  2. 2.Laboratoire GEMPPMBat Blaise PASCAL, INSAVilleurbanneFrance

Personalised recommendations