Journal of Materials Science

, Volume 42, Issue 18, pp 7716–7720 | Cite as

Formation of a nanocrystalline surface layer on steels by air blast shot peening

  • J. L. LiuEmail author
  • M. Umemoto
  • Y. Todaka
  • K. Tsuchiya


A nanostructured surface layer was fabricated on two kinds of steels by means of air blast shot peening. The nanolayer shows a sharp boundary to the underlying work-hardened area and good thermal stability up to 873 K. It has much higher hardness than the work hardened region in both the as-treated and annealed states. When using small shot sizes, the nano area can be formed in very short treatment times, and the thickness and continuity of the nanolayer is enhanced. On the contrary, the nanocrystalline region is more difficult to synthesize when using large shot particles, even though the deformed area is much thicker. The effect of particle diameter is attributed to the different collision time and different strain rate of the treated materials.


Good Thermal Stability High Pressure Torsion Shot Peening Deformation Layer Plain Surface 



Present study is partly supported by the grant-in-aid by the Japan Society for the Promotion of Science. (No.1420513)


  1. 1.
    Jang JSC, Koch CC (1990) Scripta Metall Mater 24:1599CrossRefGoogle Scholar
  2. 2.
    Hellstern E, Fecht HJ, Garland C, Johnson WL (1989) Mater Res Soc Symp Proc 132:137CrossRefGoogle Scholar
  3. 3.
    Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Trans A 21:2333CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  5. 5.
    Valiev RZ, Ivanisenko YUV, Rauchand EF, Baudelet B (1996) Acta Mater 44:4705CrossRefGoogle Scholar
  6. 6.
    Shin DH, Kim BC, Kim YS, Park KT (2000) Acta Mater 48:2247CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Korzikov AV, Mulyukov RR (1992) Phys Metall 73:373Google Scholar
  8. 8.
    Suryanarayana C (1995) Int Mater Rev 40:41CrossRefGoogle Scholar
  9. 9.
    Fecht HJ (1995) Nanostruct Mater 6:33CrossRefGoogle Scholar
  10. 10.
    Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Acta Mater 51:2777CrossRefGoogle Scholar
  11. 11.
    Lu K, Lu J (1999) J Mater Sci Tech 15:193CrossRefGoogle Scholar
  12. 12.
    Wang ZB, Tao NR, Li S, Wang W, Liu G, Lu J, Lu K (2003) Mater Sci Eng A 352:144CrossRefGoogle Scholar
  13. 13.
    Tao NR, Wu XL, Sui ML, Lu J, Lu K (2004) J Mater Res 19:1623CrossRefGoogle Scholar
  14. 14.
    Ren JW, Shan AD, Zhang JB, Song HW, Liu JL (2006) Mater Lett 60:2076CrossRefGoogle Scholar
  15. 15.
    Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Acta Mater 52:4101CrossRefGoogle Scholar
  16. 16.
    Umemoto M, Todaka Y, Tsuchiya K (2003) Mater Trans 44:1488 CrossRefGoogle Scholar
  17. 17.
    Yin J, Umemoto M, Liu ZG, Tsuchiya K (2001) ISIJ International 41:1389 CrossRefGoogle Scholar
  18. 18.
    Mohamed FA, Li Y (2001) Mater Sci Eng A 298:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. L. Liu
    • 1
    Email author
  • M. Umemoto
    • 2
  • Y. Todaka
    • 2
  • K. Tsuchiya
    • 2
  1. 1.Superalloy Division, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations