Journal of Materials Science

, Volume 42, Issue 8, pp 2886–2890 | Cite as

Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties

  • Shengyu Yin
  • Donghua ChenEmail author
  • Wanjun Tang
  • Yuhong Yuan


Red long afterglow CaTiO3: Pr, Al phosphors have been synthesized by sol-gel method using ethanol as solvent and citric acid as a chelating agent. TG-DTG curves and X-ray diffraction analysis indicate that crystalline calcium titanate has been synthesized at calcining temperature of 700 °C for 5 h. Photoluminescence and decay curves indicate that the luminescence properties of phosphors synthesized by sol-gel method are better than that prepared by solid-state reaction and the sample heated at 900 °C exhibits the optimal luminous property. Using ultrasonic dispersing technique improved the luminescence properties of phosphors.


Luminescence Property Phosphor Powder Calcium Titanate Luminous Property Excitation Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the Key Natural Science Fund of Science and Technology Department of Hubei Province under grant no. 2001ABA009 for this work is greatly appreciated.


  1. 1.
    Diallo PT, Boutinaud P, Mahiou R, Caperaa J, Cousseins JC (1997) Phys Stat Sol A 160:255CrossRefGoogle Scholar
  2. 2.
    Royce MR, Matsuda S, Tamaki H US Patent: 5, 650, 094, 1997207222Google Scholar
  3. 3.
    Li J, Kuwabara M (2003) Sci Technol Adv Mater 4:143CrossRefGoogle Scholar
  4. 4.
    Shen C, Liu Q, Liu Q (2004) Mater Sci Eng B 111:31CrossRefGoogle Scholar
  5. 5.
    Kang YC, Choi JS, Park SB, Cho SH, Yoo JS, Lee JD (1997) J Aerosol Sci 28:541CrossRefGoogle Scholar
  6. 6.
    Okamoto S, Kobayashi H, Yamamoto H (1999) J Appl Phys 86:5594CrossRefGoogle Scholar
  7. 7.
    Jia W, Xu W, Rivera I, Perez A, Fernandez F (2003) Solid State Commun 126:153CrossRefGoogle Scholar
  8. 8.
    Yan B, Zhou K (2005) J Alloys Compd 398:165CrossRefGoogle Scholar
  9. 9.
    Hyeona KA, Byeona SH, Parkb JC, Kimc DK, Suhd KS (2000) Solid State Commun 11:99CrossRefGoogle Scholar
  10. 10.
    Tian L, Mho S (2003) Solid State Commun 125:647CrossRefGoogle Scholar
  11. 11.
    Jia W, Perez-Andu Jar A, Rivera I (2003) J Electrochem Soc 150:161CrossRefGoogle Scholar
  12. 12.
    Park JK, Ryu H, Park HD, Choi SY (2001) J Eur Ceram Soc 21:535CrossRefGoogle Scholar
  13. 13.
    Okamoto S, Yamamoto H (2002) J Appl Phys 91:5492CrossRefGoogle Scholar
  14. 14.
    Okamoto S, Yamamoto H (2001) Appl Phys Lett. 78:655CrossRefGoogle Scholar
  15. 15.
    Kim KH, Park JK, Kim CH, Park HD, Chang H, Choi SY (2002) Ceram Int 28:29CrossRefGoogle Scholar
  16. 16.
    Diallo PT, Jeanlouis K, Boutinaud P, Mahiou R, Cousseins JC (2001) J Alloy Compd 323–324:218CrossRefGoogle Scholar
  17. 17.
    Pan Y, Su Q, Xu H, Chen T, Ge W, Yang C, Wu M (2003) J Solid State Chem 174:69CrossRefGoogle Scholar
  18. 18.
    Pinel E, Boutinaud P, Bertrand G, Caperaa C, Cellier J, Mahiou R. (2004) J Alloy Compd 374:202CrossRefGoogle Scholar
  19. 19.
    Chung SM, Han SH, Song KH, Kim ES, Kim YJ (2005) J Lumin 114:227CrossRefGoogle Scholar
  20. 20.
    Lin Y, Zhang Z, Zhang F, Tang Z, Chen Q (2000) Mater Chem Phys 65:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shengyu Yin
    • 1
  • Donghua Chen
    • 1
    Email author
  • Wanjun Tang
    • 1
  • Yuhong Yuan
    • 1
  1. 1.Hubei Key Laboratory for Catalysis and Material ScienceCollege of Chemistry and Material Science, South-Central University for NationalitiesHubeiP.R. China

Personalised recommendations