Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 7052–7055 | Cite as

Effects of Gd doping on the sintering and microwave dielectric properties of BiNbO4 ceramics

  • Yue PangEmail author
  • Chaowei Zhong
  • Shuren Zhang
Letter

Abstract

Gd3+ was chosen as a substitute for Bi3+ in BiNbO4 ceramics, and the substitution effects on the sintering performance and microwave dielectric properties were studied in this paper. The high temperature triclinic phase was observed only in the Bi0.98Gd0.02NbO4 ceramics when sintered at 920 °C. Both bulk densities and dielectric constant (εr) increased with the sintering temperature, while decreased with the Gd content. The quality factor (Q) exhibited a correlation to the Gd content and the microstructures of Bi1−xGdxNbO4 ceramics. At the sintering temperature of 900 °C, Bi0.992Gd0.008NbO4 ceramics exhibited microwave dielectric properties of εr ∼ 43.87, × f ∼ 16,852 GHz (at 4.3 GHz), and its temperature coefficient of resonant frequency (τf) was found to be near-to-zero.

Keywords

Resonant Frequency Sinter Temperature Microwave Dielectric Property Extrinsic Loss Triclinic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kageta H, Kato J, Kameyama I (1992) Jpn J Appl Phys 31:3152CrossRefGoogle Scholar
  2. 2.
    Huang CL, Weng MH, Yu CC (2001) Ceram Int 27:343CrossRefGoogle Scholar
  3. 3.
    Wang ZW, Yao X, Zhang LY (2004) Ceram Int 30:1929CrossRefGoogle Scholar
  4. 4.
    KambaS, Wang H, Berta M et al (2006) J Eur Ceram Soc 26:2861CrossRefGoogle Scholar
  5. 5.
    Lee HR, Yoon KH, Kim ES (2003) Jpn J Appl Phys 42:6168CrossRefGoogle Scholar
  6. 6.
    Wang ZW, Yao X, Zhang LY (2004) Ceram Int 30:1329CrossRefGoogle Scholar
  7. 7.
    Yang CF (1999) Jpn J Appl Phys 38:6797CrossRefGoogle Scholar
  8. 8.
    Wang N, Zhao MY, Yin ZW, Li W (2004) Mater Res Bull 39:439CrossRefGoogle Scholar
  9. 9.
    Huang CL, Weng MH, Wu CC (2000) Jpn J Appl Phys 39:3506CrossRefGoogle Scholar
  10. 10.
    Huang CL, Weng MH, Wu CC, Lion CT (2001) Mater Res Bull 36:827CrossRefGoogle Scholar
  11. 11.
    Wang N, Zhao MY, Li W, Yin ZW (2003) Jpn J Appl Phys 42:3514CrossRefGoogle Scholar
  12. 12.
    Tsur Y, Hitomi A, Scrymgeour I et al (2001) Jpn J Appl Phys 40:255CrossRefGoogle Scholar
  13. 13.
    Hakki BW, Coleman PD (1960) IEEE Trans Microwave Theory Tech MTT-8:402CrossRefGoogle Scholar
  14. 14.
    Huang CL, Weng MH, (1999) Jpn J Appl Phys 38:5949CrossRefGoogle Scholar
  15. 15.
    Tamura H (1994) Am Ceram Soc Bull 73:92Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronics Science & Technology of ChinaChengduChina

Personalised recommendations